Aging of Stem Cells in Skin: What Is Driving the Aging Process?

Author(s):  
Sabrina Gundermann ◽  
Hans-Jürgen Stark ◽  
Petra Boukamp
Keyword(s):  
Author(s):  
Yi Liu ◽  
Gary Van Zant ◽  
Ying Liang
Keyword(s):  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2660-2660
Author(s):  
Ying Liang

The aging of hematopoietic stem cells (HSCs) contributes to the aging of blood system and perhaps the whole organism. The aging process is coordinately determined by both genetic and epigenetic factors, and demonstrates inter-individual variations. We used high-throughput sequencing methods to study the age-dependent changes of genome-wide DNA methylation and gene expression patterns in HSCs of C57BL/6 (B6) and DBA/2 mouse strains, which have shown natural variations in HSC aging process. We observed global age-associated decrease of DNA methylation in both strains, but D2 HSCs have a stronger loss of epigenetic control than B6 stem cells during aging. Majority age-related changes of DNA methylation occur from young to mid-aged stages. We identified stable strain-specific differentially methylated regions (DMRs) that overlap with cis-eQTLs. Moreover, transcription factor binding site motifs are more likely to be disrupted in the DMRs, suggesting the potential impact of genetic variations on epigenetic regulation of HSC aging. We further demonstrated that strain-specific DMRs have more profound effects on the aging of B6 HSCs than D2 stem cells. Transposons are differentially regulated by the DMRs in the two strains, in which D2 HSCs are prone to transposon insertion. This study comprehensively investigated the effects of natural genetic and epigenetic variations on HSC aging. Loss of DNA methylation is an epigenetic signature of stem cell aging, and DNA methylation variations correlates with genetic variations, both contributing to inter-individual differences in stem cell and perhaps organismal aging. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Sarah Karimi ◽  
Setareh Raoufi ◽  
Zohreh Bagher

Introduction: Aging is a natural phenomenon that is caused by changes in the cells of the body. Theoretically, aging starts from birth and lasts throughout life. These changes affect the function of the cells. Also, in old tissues, the capacity for homeostasis and tissue repair is decline due to destructive changes in specific tissue stem cells, niche of stem cells and systemic factors that regulate stem cell activity. Understanding molecular pathways that disrupt stem cell function during aging is crucial for the development of new treatments for aging-associated diseases. In this article, the symptoms of stem cell aging and the key molecular pathways that are commonly used for the aging of stem cells were discussed. We will consider experimental evidence for all of the mechanisms and evaluate the way that can slow down or even stop the aging process. Finally, we will look at the aging process of three types of stem cells.


2019 ◽  
Vol 14 (3) ◽  
pp. 244-248 ◽  
Author(s):  
Farshad Zarei ◽  
Abolfazl Abbaszadeh

The human skin undergoes the complex process of aging which is prompted by the interplay of intrinsic mechanisms and extrinsic influences. Aging is unavoidable but can be somewhat delayed. Numerous approaches have been developed to slow down facial skin aging process as it is of interest to stake holders in the beauty and fashion world as well as to plastic surgeons. Adipose-derived stem cell [ADSC] and mesenchymal stem cell [MSC] as potential anti-aging agents to some extent have provided a promising and effective alternative in managing skin and facial skin aging. Furthermore, bone marrow-derived mesenchymal stem cells [BMMSC] have exhibited similar ability to rejuvenate aged skin. This review is aimed at giving a comprehensive account of the application of stem cells especially ADSCs and MSCs to reduce or slow down the rate of facial skin aging process.


Sensors ◽  
2010 ◽  
Vol 10 (6) ◽  
pp. 6172-6194 ◽  
Author(s):  
Chi-Hsien Peng ◽  
Yuh-Lih Chang ◽  
Chung-Lan Kao ◽  
Ling-Min Tseng ◽  
Chih-Chia Wu ◽  
...  

2015 ◽  
Vol 04 (03) ◽  
pp. 89-95
Author(s):  
Krishna S. Rao ◽  
Swarup K. Chakrabarti ◽  
Vaishali S. Dongare ◽  
B. S. Sharath ◽  
H. M. Vikas ◽  
...  

Blood ◽  
2018 ◽  
Vol 131 (5) ◽  
pp. 479-487 ◽  
Author(s):  
Gerald de Haan ◽  
Seka Simone Lazare

Abstract Hematopoietic stem cells (HSCs) ensure a balanced production of all blood cells throughout life. As they age, HSCs gradually lose their self-renewal and regenerative potential, whereas the occurrence of cellular derailment strongly increases. Here we review our current understanding of the molecular mechanisms that contribute to HSC aging. We argue that most of the causes that underlie HSC aging result from cell-intrinsic pathways, and reflect on which aspects of the aging process may be reversible. Because many hematological pathologies are strongly age-associated, strategies to intervene in aspects of the stem cell aging process may have significant clinical relevance.


Sign in / Sign up

Export Citation Format

Share Document