scholarly journals Genome-Wide Epigenetic Modifications in Cancer

2010 ◽  
pp. 25-49 ◽  
Author(s):  
Yoon Jung Park ◽  
Rainer Claus ◽  
Dieter Weichenhan ◽  
Christoph Plass
2016 ◽  
Vol 371 (1688) ◽  
pp. 20150114 ◽  
Author(s):  
Nancy G. Forger

Circumstantial evidence alone argues that the establishment and maintenance of sex differences in the brain depend on epigenetic modifications of chromatin structure. More direct evidence has recently been obtained from two types of studies: those manipulating a particular epigenetic mechanism, and those examining the genome-wide distribution of specific epigenetic marks. The manipulation of histone acetylation or DNA methylation disrupts the development of several neural sex differences in rodents. Taken together, however, the evidence suggests there is unlikely to be a simple formula for masculine or feminine development of the brain and behaviour; instead, underlying epigenetic mechanisms may vary by brain region or even by dependent variable within a region. Whole-genome studies related to sex differences in the brain have only very recently been reported, but suggest that males and females may use different combinations of epigenetic modifications to control gene expression, even in cases where gene expression does not differ between the sexes. Finally, recent findings are discussed that are likely to direct future studies on the role of epigenetic mechanisms in sexual differentiation of the brain and behaviour.


2013 ◽  
Vol 35 (6) ◽  
pp. E5 ◽  
Author(s):  
Shuhan He ◽  
Martin H. Pham ◽  
Matthew Pease ◽  
Gabriel Zada ◽  
Steven L. Giannotta ◽  
...  

Object A more comprehensive understanding of the epigenetic abnormalities associated with meningioma tumorigenesis, growth, and invasion may provide useful targets for molecular classification and development of targeted therapies for meningiomas. Methods The authors performed a review of the current literature to identify the epigenetic modifications associated with the formation and/or progression of meningiomas. Results Several epigenomic alterations, mainly pertaining to DNA methylation, have been associated with meningiomas. Hypermethylation of TIMP3 inactivates its tumor suppression activity while CDKN2 (p14[ARF]) and TP73 gene hypermethylation and HIST1H1c upregulation interact with the p53 regulation of cell cycle control. Other factors such as HOX, IGF, WNK2, and TGF-β epigenetic modifications allow either upregulation or downregulation of critical pathways for meningioma development, progression, and recurrence. Conclusions Genome-wide methylation profiling demonstrated that global hypomethylation correlates with tumor grades and severity. Identification of additional epigenetic changes, such as histone modification and higher-order chromosomal structure, may allow for a more thorough understanding of tumorigenesis and enable future individualized treatment strategies for meningiomas.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Habig ◽  
Cecile Lorrain ◽  
Alice Feurtey ◽  
Jovan Komluski ◽  
Eva H. Stukenbrock

AbstractMutations are the source of genetic variation and the substrate for evolution. Genome-wide mutation rates appear to be affected by selection and are probably adaptive. Mutation rates are also known to vary along genomes, possibly in response to epigenetic modifications, but causality is only assumed. In this study we determine the direct impact of epigenetic modifications and temperature stress on mitotic mutation rates in a fungal pathogen using a mutation accumulation approach. Deletion mutants lacking epigenetic modifications confirm that histone mark H3K27me3 increases whereas H3K9me3 decreases the mutation rate. Furthermore, cytosine methylation in transposable elements (TE) increases the mutation rate 15-fold resulting in significantly less TE mobilization. Also accessory chromosomes have significantly higher mutation rates. Finally, we find that temperature stress substantially elevates the mutation rate. Taken together, we find that epigenetic modifications and environmental conditions modify the rate and the location of spontaneous mutations in the genome and alter its evolutionary trajectory.


2021 ◽  
Vol 83 (3) ◽  
pp. 1251-1268
Author(s):  
Katie J. Schenning ◽  
Sarah Holden ◽  
Brett A. Davis ◽  
Amelia Mulford ◽  
Kimberly A. Nevonen ◽  
...  

Background: Geriatric surgical patients are at higher risk of developing postoperative neurocognitive disorders (NCD) than younger patients. The specific mechanisms underlying postoperative NCD remain unknown, but they have been linked to genetic risk factors, such as the presence of APOE4, compared to APOE3, and epigenetic modifications caused by exposure to anesthesia and surgery. Objective: To test the hypothesis that compared to E3 mice, E4 mice exhibit a more pronounced postoperative cognitive impairment associated with differential DNA methylation in brain regions linked to learning and memory. Methods: 16-month-old humanized apolipoprotein-E targeted replacement mice bearing E3 or E4 were subjected to surgery (laparotomy) under general isoflurane anesthesia or sham. Postoperative behavioral testing and genome-wide DNA methylation were performed. Results: Exposure to surgery and anesthesia impaired cognition in aged E3, but not E4 mice, likely due to the already lower cognitive performance of E4 prior to surgery. Cognitive impairment in E3 mice was associated with hypermethylation of specific genes, including genes in the Ephrin pathway implicated in synaptic plasticity and learning in adults and has been linked to Alzheimer’s disease. Other genes, such as the Scratch Family Transcriptional Repressor 2, were altered after surgery and anesthesia in both the E3 and E4 mice. Conclusion: Our findings suggest that the neurocognitive and behavioral effects of surgery and anesthesia depend on baseline neurocognitive status and are associated with APOE isoform-dependent epigenetic modifications of specific genes and pathways involved in memory and learning.


2017 ◽  
Vol 41 (2) ◽  
pp. 645-660 ◽  
Author(s):  
Zijun Wang ◽  
Qianjin Lu ◽  
Zhihui Wang

Epigenetic modification is an additional regulator in immune responses as the genome-wide profiling somehow fails to explain the sophisticated mechanisms in autoimmune diseases. The effect of epigenetic modifications on adaptive immunity derives from their regulations to induce a permissive or negative gene expression. Epigenetic events, such as DNA methylation, histone modifications and microRNAs (miRNAs) are often found in T cell activation, differentiation and commitment which are the major parts in cellular immunity. Recognizing the complexity of interactions between epigenetic mechanisms and immune disturbance in autoimmune diseases is essential for the exploration of efficient therapeutic targets. In this review, we summarize a list of studies that indicate the significance of dysregulated epigenetic modifications in autoimmune diseases while focusing on T cell immunity.


2011 ◽  
Vol 26 (9) ◽  
pp. 2558-2569 ◽  
Author(s):  
S. S. Hammoud ◽  
D. A. Nix ◽  
A. O. Hammoud ◽  
M. Gibson ◽  
B. R. Cairns ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Elisa Cerruti ◽  
Carmina Gisbert ◽  
Hajk-Georg Drost ◽  
Danila Valentino ◽  
Ezio Portis ◽  
...  

AbstractIn horticulture, grafting is a popular technique used to combine positive traits from two different plants. This is achieved by joining the plant top part (scion) onto a rootstock which contains the stem and roots. Rootstocks can provide resistance to stress and increase plant production, but despite their wide use, the biological mechanisms driving rootstock-induced alterations of the scion phenotype remain largely unknown. Given that epigenetics plays a relevant role during distance signalling in plants, we studied the genome-wide DNA methylation changes induced in eggplant (Solanum melongena) scion using two interspecific rootstocks to increase vigour. We found that vigour was associated with a change in scion gene expression and a genome-wide hypomethylation in the CHH context. Interestingly, this hypomethylation correlated with the downregulation of younger and potentially more active long terminal repeat retrotransposable elements (LTR-TEs), suggesting that graft-induced epigenetic modifications are associated with both physiological and molecular phenotypes in grafted plants. Our results indicate that the enhanced vigour induced by heterografting in eggplant is associated with epigenetic modifications, as also observed in some heterotic hybrids.


Sign in / Sign up

Export Citation Format

Share Document