Co-Cultured Hepatocyte-Spheroid Chip Constructed Using the Microfabrication Technique

2010 ◽  
pp. 383-389
Author(s):  
Yusuke Sakai ◽  
Kohji Nakazawa
Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mei Zhao ◽  
Sijie Yang ◽  
Kenan Zhang ◽  
Lijie Zhang ◽  
Ping Chen ◽  
...  

AbstractNonlayered two-dimensional (2D) materials have attracted increasing attention, due to novel physical properties, unique surface structure, and high compatibility with microfabrication technique. However, owing to the inherent strong covalent bonds, the direct synthesis of 2D planar structure from nonlayered materials, especially for the realization of large-size ultrathin 2D nonlayered materials, is still a huge challenge. Here, a general atomic substitution conversion strategy is proposed to synthesize large-size, ultrathin nonlayered 2D materials. Taking nonlayered CdS as a typical example, large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method, where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method. The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations. The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials, providing a bridge between layered and nonlayered materials, meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.


2021 ◽  
pp. 251659842110452
Author(s):  
Rahul Shukla ◽  
Gowtham Beera ◽  
Ankit Dubey ◽  
Varun P. Sharma ◽  
P. Ram Sankar ◽  
...  

In the present work, a micro-electro-mechanical system (MEMS)-based electrostatic micromotor is designed and fabricated. Finite element analysis is done and various parameters affecting the torque are studied. Maximum torque is achieved at 120° phase angle. The effect of change in voltage, micromotor height and frequency is analysed and discussed. UV-SLIGA, a microfabrication technique, is used for the fabrication of electrostatic micromotor of height 30µm and higher. UV lithography is conducted by both positive AZ P4620 and negative (SU-8 10 and SU-8 2150) photoresists. Copper (Cu) is used as a sacrificial layer to release the rotor (the movable part) of the electrostatic micromotor. Electroformed nickel (Ni) is used for making stator, rotor and axle, whereas chromium (Cr) is used as a seed layer. The micromotor is fabricated with a stator-rotor pole having configuration ratio of 3:2. The gap between the rotor and axle is 20 µm. Wet chemical etching is used to etch the deposited metal layers (Cr, Ni and Cu). Challenges such as the adhesion between the photoresist mould and substrate, cracks, seepage and misalignment are faced during the microfabrication. These challenges are overcome by optimizing the various parameters. The fabrication of electrostatic micromotor is done successfully and the results are discussed in the article.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 002543-002566
Author(s):  
Daniel Harris ◽  
Robert Dean ◽  
Ashish Palkar ◽  
Mike Palmer ◽  
Charles Ellis ◽  
...  

Low–temperature bonding techniques are of great importance in fabricating MEMS devices, and especially for sealing microfluidic MEMS devices that require encapsulation of a liquid. Although fusion, thermocompression, anodic and eutectic bonding have been successfully used in fabricating MEMS devices, they require temperatures higher than the boiling point of commonly used fluids in MEMS devices such as water, alcohols and ammonia. Although adhesives and glues have been successfully used in this application, they may contaminate the fluid in the MEMS device or the fluid may prevent suitable bonding. Indium (In) possesses the unusual property of being cold weldable. At room temperature, two sufficiently clean In surfaces can be cold welded by bringing them into contact with sufficient force. The bonding technique developed here consists of coating and patterning one Si wafer with 500A Ti, 300A Ni and 1 μm In through electron beam evaporation. A second wafer is metallized and patterned with a 500A Ti and 1 μm Cu by electron beam evaporation and then electroplated with 10 μm of In. Before the In coated sections are brought into contact, the In surfaces are chemically cleaned to remove indium-oxide. Then the sections are brought into contact and held under sufficient pressure to cold weld the sections together. Using this technique, MEMS water-filled and mercury-filled microheatpipes were successfully fabricated and tested. Additionally, this microfabrication technique is useful for fabricating other types of MEMS devices that are limited to low-temperature microfabrication processes.


1990 ◽  
Vol 259 (1) ◽  
pp. G15-G20
Author(s):  
M. Levinson ◽  
B. Oswald ◽  
S. Quarfordt

Rat hepatocyte monolayer triglyceride content was increased modestly by incubations with apolipoprotein E-containing triglyceride emulsions or chylomicrons (exogenous) and was increased substantially by increasing media free fatty acid concentrations (endogenous). The secretion of both endogenous and exogenous triglyceride into media was enhanced by additions of serum and serum components. These additions not only enhanced hepatocyte triglyceride secretion but also, because of the absence of media lipolysis, more triglyceride was recovered in the system. Lipoprotein-free serum replicated the effect of whole serum. Lipoprotein produced a more modest secretory response. The apolipoprotein C components were the only ones that enhanced hepatic triglyceride secretion. Both lipoprotein-free plasma and lipoprotein enhanced the in vitro transfer of hepatocyte exogenous triglyceride to fibroblast.


2019 ◽  
Vol 16 (12) ◽  
pp. 1593-1603 ◽  
Author(s):  
Yi Li ◽  
Chenwei Wang ◽  
Jiyuan Lu ◽  
Ke Huang ◽  
Yu Han ◽  
...  

1999 ◽  
Author(s):  
Di Chen ◽  
Dacheng Zhang ◽  
Guifu Ding ◽  
Xiaolin Zhao ◽  
Jilin Zhang ◽  
...  

2016 ◽  
Vol 40 (6) ◽  
pp. 766-771
Author(s):  
Ji-Young Woo ◽  
Hyun-Kyoung Yang ◽  
Ginnae Ahn ◽  
Kyunghoi Kim ◽  
Jae-Young Je

Sign in / Sign up

Export Citation Format

Share Document