Data Interpretation from a Transportable Laboratory in a Complex Coastal Site

Author(s):  
J. Plaza ◽  
M. D. Andrés ◽  
M. Martin ◽  
M. Millán
Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


2013 ◽  
Vol 12 (12) ◽  
pp. 2331-2337
Author(s):  
Wenpo Shan ◽  
Haixia Lu ◽  
Pengyan Liu ◽  
Zhanchen Li ◽  
Da Lu ◽  
...  

2019 ◽  
Vol 72 (0) ◽  
pp. 68-77
Author(s):  
Shinichiro Iso ◽  
Kazuya Ishitsuka ◽  
Kyosuke Onishi ◽  
Toshifumi Matsuoka

Author(s):  
Vinod Narang ◽  
P. Muthu ◽  
J.M. Chin ◽  
Vanissa Lim

Abstract Implant related issues are hard to detect with conventional techniques for advanced devices manufactured with deep sub-micron technology. This has led to introduction of site-specific analysis techniques. This paper presents the scanning capacitance microscopy (SCM) technique developed from backside of SOI devices for packaged products. The challenge from backside method includes sample preparation methodology to obtain a thin oxide layer of high quality, SCM parameters optimization and data interpretation. Optimization of plasma etching of buried oxide followed by a new method of growing thin oxide using UV/ozone is also presented. This oxidation method overcomes the limitations imposed due to packaged unit not being able to heat to high temperature for growing thermal oxide. Backside SCM successfully profiled both the n and p type dopants in both cache and core transistors.


Author(s):  
Sajal Biring

Abstract The FinFET has been introduced in the last decade to provide better transistor performance as the device size shrinks. The performance of FinFET is highly sensitive to the size and shape of the fin, which needs to be optimized with tighter control. Manual measurement of nano-scale features on TEM images of FinFET is not only a time consuming and tedious task, but also prone to error owing to visual judgment. Here, an auto-metrology approach is presented to extract the measured values with higher precision and accuracy so that the uncertainty in the manual measurement can be minimized. Firstly, a FinFET TEM image is processed through an edge detecting algorithm to reveal the fin profile precisely. Finally, an algorithm is utilized to calculate out the required geometrical data relevant to the FinFET parameters and summarizes them to a table or plots a graph based on the purpose of data interpretation. This auto-metrology approach is expected to be adopted by academia and/or industry for proper data analysis and interpretation with higher precision and efficiency.


Sign in / Sign up

Export Citation Format

Share Document