Large Scale Surface Heat Fluxes

Author(s):  
E. S. Sarachik
2014 ◽  
Vol 27 (17) ◽  
pp. 6456-6471 ◽  
Author(s):  
Hao Luo ◽  
Annalisa Bracco ◽  
Fan Zhang

Abstract Modeling deep convection is a key challenge for climate science. Here two simulations of the Labrador Sea circulation obtained with the Regional Ocean Modeling System (ROMS) run at a horizontal resolution of 7.5 km are used to characterize the response of convection to atmospheric forcing and its seasonal variability over the period 1980–2009. The integrations compare well with the sparse observations available. The modeled convection varies in three key aspects over the 30 years considered. First, its magnitude changes greatly at decadal scales. This aspect is supported by the in situ observations. Second, the initiation and peak of convection (i.e., initiation and maximum) shift by 2–3 weeks between strong and weak convective years. Third, the duration of convection varies by approximately one month between strong and weak years. The last two changes are associated with the variability of the time-integrated surface heat fluxes over the Labrador Sea during winter and spring, while the first results from changes in both atmospheric heat fluxes and oceanic conditions through the lateral inflow of warm Irminger Water from the boundary current system to the basin interior. Changes in surface heat fluxes over the convective region are linked to large-scale modes of variability, the North Atlantic Oscillation and Arctic Oscillation. Implications for modeling the climate variability of the Labrador basin are discussed.


Author(s):  
Xiang-Yu Li ◽  
Hailong Wang ◽  
Jingyi Chen ◽  
Satoshi Endo ◽  
Geet George ◽  
...  

Abstract Large-eddy simulation (LES) is able to capture key boundary-layer (BL) turbulence and cloud processes. Yet, large-scale forcing and surface turbulent fluxes of sensible and latent heat are often poorly prescribed for LES simulations. We derive these quantities from measurements and reanalysis obtained for two cold air outbreak (CAO) events during Phase I of the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) in February-March 2020. We study the two contrasting CAO cases by performing LES and test the sensitivity of BL structure and clouds to large-scale forcings and turbulent heat fluxes. Profiles of atmospheric state and large-scale divergence and surface turbulent heat fluxes obtained from the reanalysis data ERA5 agree reasonablywell with those derived fromACTIVATE field measurements for both cases at the sampling time and location. Therefore, we adopt the time evolving heat fluxes, wind and advective tendencies profiles from ERA5 reanalysis data to drive the LES.We find that large-scale thermodynamic advective tendencies and wind relaxations are important for the LES to capture the evolving observed BL meteorological states characterized by the hourly ERA5 reanalysis data and validated by the observations. We show that the divergence (or vertical velocity) is important in regulating the BL growth driven by surface heat fluxes in LES simulations. The evolution of liquid water path is largely affected by the evolution of surface heat fluxes. The liquid water path simulated in LES agrees reasonably well with the ACTIVATE measurements. This study paves the path to investigate aerosol-cloud-meteorology interactions using LES informed and evaluated by ACTIVATE field measurements.


2017 ◽  
Vol 37 (14) ◽  
pp. 4757-4767 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Zhongbo Su

2021 ◽  
Vol 149 (5) ◽  
pp. 1517-1534
Author(s):  
Benjamin Jaimes de la Cruz ◽  
Lynn K. Shay ◽  
Joshua B. Wadler ◽  
Johna E. Rudzin

AbstractSea-to-air heat fluxes are the energy source for tropical cyclone (TC) development and maintenance. In the bulk aerodynamic formulas, these fluxes are a function of surface wind speed U10 and air–sea temperature and moisture disequilibrium (ΔT and Δq, respectively). Although many studies have explained TC intensification through the mutual dependence between increasing U10 and increasing sea-to-air heat fluxes, recent studies have found that TC intensification can occur through deep convective vortex structures that obtain their local buoyancy from sea-to-air moisture fluxes, even under conditions of relatively low wind. Herein, a new perspective on the bulk aerodynamic formulas is introduced to evaluate the relative contribution of wind-driven (U10) and thermodynamically driven (ΔT and Δq) ocean heat uptake. Previously unnoticed salient properties of these formulas, reported here, are as follows: 1) these functions are hyperbolic and 2) increasing Δq is an efficient mechanism for enhancing the fluxes. This new perspective was used to investigate surface heat fluxes in six TCs during phases of steady-state intensity (SS), slow intensification (SI), and rapid intensification (RI). A capping of wind-driven heat uptake was found during periods of SS, SI, and RI. Compensation by larger values of Δq > 5 g kg−1 at moderate values of U10 led to intense inner-core moisture fluxes of greater than 600 W m−2 during RI. Peak values in Δq preferentially occurred over oceanic regimes with higher sea surface temperature (SST) and upper-ocean heat content. Thus, increasing SST and Δq is a very effective way to increase surface heat fluxes—this can easily be achieved as a TC moves over deeper warm oceanic regimes.


2010 ◽  
Vol 24 (4) ◽  
pp. 845-849 ◽  
Author(s):  
M. Ajith ◽  
Ranjan Das ◽  
Ramgopal Uppaluri ◽  
Subhash C. Mishra

Author(s):  
Muhammad ◽  
R I Lestari ◽  
F Mulia ◽  
Y Ilhamsyah ◽  
Z Jalil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document