Evolution of Massive Common Envelope Binaries and Mass Loss

Author(s):  
A. Tutukov ◽  
L. Yungelson
Keyword(s):  
Author(s):  
Binyamin V Naiman ◽  
Efrat Sabach ◽  
Avishai Gilkis ◽  
Noam Soker

Abstract We simulate the evolution of binary systems with a massive primary star of 15M⊙ where we introduce an enhanced mass loss due to jets that the secondary star might launch, and find that in many cases the enhanced mass loss brings the binary system to experience the grazing envelope evolution (GEE) and form a progenitor of Type IIb supernova (SN IIb). The jets, the Roche lobe overflow (RLOF), and a final stellar wind remove most of the hydrogen-rich envelope, leaving a blue-compact SN IIb progenitor. In many cases without this jet-driven mass loss the system enters a common envelope evolution (CEE) and does not form a SN IIb progenitor. We use the stellar evolutionary code MESA binary and mimic the jet-driven mass loss with a simple prescription and some free parameters. Our results show that the jet-driven mass loss, that some systems have during the GEE, increases the parameter space for stellar binary systems to form SN IIb progenitors. We estimate that the binary evolution channel with GEE contributes about a quarter of all SNe IIb, about equal to the contribution of each of the other three channels, binary evolution without a GEE, fatal CEE (where the secondary star merges with the core of the giant primary star), and the single star channel.


1979 ◽  
Vol 83 ◽  
pp. 383-399
Author(s):  
Janusz Ziółkowski

Three situations involving mass loss from binary systems are discussed. (1) Non-conservative mass exchange in semi-detached binaries. No quantitative estimate of this mechanism is possible at present. (2) Common envelope binaries. There are both theoretical and observational indications that this phase of evolution happens to many systems, even to some that are not very close initially (orbital periods ~ years). (3) Stellar winds in binaries. Observational evidence suggests that stellar winds from components of close binaries (especially semi-detached) are significantly stronger than from single stars at the same location in the H-R diagram. Theoretical arguments indicate that in some cases stellar wind may stabilize the component of a binary against the Roche lobe overflow. In some cases there is weak evidence of an anisotropy in the stellar wind.


2008 ◽  
Vol 4 (S252) ◽  
pp. 419-420
Author(s):  
Hongwei. Ge ◽  
R. F. Webbink ◽  
Z. Han

AbstractWe describe our work on the development and application of a stellar structure code to compute model sequences representing donor stars in interacting binaries subject to rapid (adiabatic) mass-loss. The donor star is assumed to remain in hydrostatic equilibrium, but no heat flow is allowed. These sequences can be used to define bifurcation sequences in close binary evolution, and to circumscribe possible survivors of common envelope evolution.


2017 ◽  
Vol 26 (1) ◽  
Author(s):  
David Bogensberger ◽  
Fraser Clarke ◽  
Anthony Eugene Lynas-Gray

AbstractSeveral post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25


1979 ◽  
Vol 83 ◽  
pp. 415-420
Author(s):  
A. Delgado

In this work we calculate the evolution of a binary system with a common envelope, which consists of a blue supergiant and a neutron star. We consider as a free parameter the effectivity with which the energy liberated at the orbit produces mass loss from the system.The evolutionary calculations were made, using various values of this parameter, for a system with mass ratio 25:1. As initial state we choose a model in the phase of Hydrogen-shell burning, before and after the begin of Helium-burning in the core.We found that, under certain conditions, it is possible for the radius of the orbit and the period of the system to increase; the time scale for the “spiral-in” would be of the order of 104-105 years. Mass loss rates are between 10−3 M⊙/y and 10−4 M⊙/y.


1990 ◽  
Vol 122 ◽  
pp. 297-298
Author(s):  
Anurag Shankar ◽  
James W. Truran ◽  
Andreas Burkert ◽  
Mario Livio

AbstractPreliminary results of 1– and 2– dimensional hydrodynamical calculations of the common envelope phase in very slow classical novae are presented. We show that frictional deposition of orbital energy and angular momentum into the envelope can potentially induce mass loss. Specifically, we find that despite rapid initial spin–up of the envelope, ejection of mass in the orbital plane continues at a substantial rate.


2018 ◽  
Vol 480 (4) ◽  
pp. 4991-5009 ◽  
Author(s):  
José F Gómez ◽  
Gilles Niccolini ◽  
Olga Suárez ◽  
Luis F Miranda ◽  
J Ricardo Rizzo ◽  
...  

ABSTRACT We present continuum and molecular-line (CO, C18O, HCO+) observations carried out with the Atacama Large Millimeter/submillimeter Array toward the ‘water fountain’ star IRAS 15103–5754, an object that could be the youngest planetary nebula (PN) known. We detect two continuum sources, separated by 0.39 ± 0.03 arcsec. The emission from the brighter source seems to arise mainly from ionized gas, thus confirming the PN nature of the object. The molecular-line emission is dominated by a circumstellar torus with a diameter of ≃0.6 arcsec (2000 au) and expanding at ≃23 km s−1. We see at least two gas outflows. The highest-velocity outflow (deprojected velocities up to 250 km s−1), traced by the CO lines, shows a biconical morphology, whose axis is misaligned ≃14° with respect to the symmetry axis of the torus, and with a different central velocity (by ≃8 km s−1). An additional high-density outflow (traced by HCO+) is oriented nearly perpendicular to the torus. We speculate that IRAS 15103–5754 was a triple stellar system that went through a common envelope phase, and one of the components was ejected in this process. A subsequent low-collimation wind from the remaining binary stripped out gas from the torus, creating the conical outflow. The high velocity of the outflow suggests that the momentum transfer from the wind is extremely efficient, or that we are witnessing a very energetic mass-loss event.


2004 ◽  
Vol 194 ◽  
pp. 81-84
Author(s):  
Ronald E. Taam

AbstractThe stellar evolutionary processes responsible for the formation of compact objects in interacting binary systems and their evolution are described. The common envelope phase plays a crucial role in their formation and angular momentum losses associated with magnetic braking and/or mass loss are important for their evolution. An application of these processes provides the evolutionary link between classes of interacting binary systems.


2019 ◽  
Vol 490 (4) ◽  
pp. 5560-5566 ◽  
Author(s):  
A Miguel Holgado ◽  
Paul M Ricker

ABSTRACT Some fraction of compact binaries that merge within a Hubble time may have formed from two massive stars in isolation. For this isolated-binary formation channel, binaries need to survive two supernova (SN) explosions in addition to surviving common-envelope evolution. For the SN explosions, both the mass loss and natal kicks change the orbital characteristics, producing either a bound or unbound binary. We show that gravitational waves (GWs) may be produced not only from the core-collapse SN process, but also from the SN mass loss and SN natal kick during the pre-SN to post-SN binary transition. We model the dynamical evolution of a binary at the time of the second SN explosion with an equation of motion that accounts for the finite time-scales of the SN mass loss and the SN natal kick. From the dynamical evolution of the binary, we calculate the GW burst signals associated with the SN natal kicks. We find that such GW bursts may be of interest to future mid-band GW detectors like DECIGO. We also find that the energy radiated away from the GWs emitted due to the SN mass loss and natal kick may be a significant fraction, ${\gtrsim }10{\,{\rm {per\, cent}}}$, of the post-SN binary’s orbital energy. For unbound post-SN binaries, the energy radiated away in GWs tends to be higher than that of bound binaries.


Sign in / Sign up

Export Citation Format

Share Document