scholarly journals The Formation and Evolution of Compact Stars in Binaries

2004 ◽  
Vol 194 ◽  
pp. 81-84
Author(s):  
Ronald E. Taam

AbstractThe stellar evolutionary processes responsible for the formation of compact objects in interacting binary systems and their evolution are described. The common envelope phase plays a crucial role in their formation and angular momentum losses associated with magnetic braking and/or mass loss are important for their evolution. An application of these processes provides the evolutionary link between classes of interacting binary systems.

1997 ◽  
Vol 180 ◽  
pp. 74-84 ◽  
Author(s):  
Mario Livio

High resolution images of planetary nebulae have revealed a variety of non-spherical morphologies. In addition, some planetary nebulae were found to produce highly collimated jets. It is argued that binary central stars may play a crucial role in the production of all of these morphologies. In particular, a specific mechanism is identified for the generation of “point-symmetric” nebulae. It is shown that the study of binary nuclei of planetary nebulae can provide essential information for the understanding of the common envelope phase in the evolution of binary systems.


1990 ◽  
Vol 122 ◽  
pp. 297-298
Author(s):  
Anurag Shankar ◽  
James W. Truran ◽  
Andreas Burkert ◽  
Mario Livio

AbstractPreliminary results of 1– and 2– dimensional hydrodynamical calculations of the common envelope phase in very slow classical novae are presented. We show that frictional deposition of orbital energy and angular momentum into the envelope can potentially induce mass loss. Specifically, we find that despite rapid initial spin–up of the envelope, ejection of mass in the orbital plane continues at a substantial rate.


2004 ◽  
Vol 194 ◽  
pp. 30-32
Author(s):  
Noam Soker

AbstractI consider three processes which enhance mass loss rate from a common envelope of a giant star with a main sequence or a white dwarf companion spiraling-in inside its envelope. I consider deposition of orbital energy and orbital angular momentum to the giant's envelope, and the formation of jets by an accreting companion and their propagation in the envelope. I find that in many cases the deposition of orbital angular momentum to the envelope may be more important to the mass loss process than the deposition of orbital energy. Jets blown by an accreting companion, in particular a white dwarf, orbiting inside the outer regions of the giant's envelope may also dominate over orbital energy deposition at early stage of the common envelope evolution. These imply that, studies which ignore the deposition of angular momentum to the envelope and the effects of the accreting companion may reach wrong conclusions.


2020 ◽  
Vol 494 (2) ◽  
pp. 2327-2336 ◽  
Author(s):  
Xinyu Li ◽  
Philip Chang ◽  
Yuri Levin ◽  
Christopher D Matzner ◽  
Philip J Armitage

ABSTRACT A compact object moving relative to surrounding gas accretes material and perturbs the density of gas in its vicinity. In the classical picture of Bondi–Hoyle–Lyttleton accretion, the perturbation takes the form of an overdense wake behind the object, which exerts a dynamical friction drag. We use hydrodynamic simulations to investigate how the accretion rate and strength of dynamical friction are modified by the presence of outflow from the compact object. We show that the destruction of the wake by an outflow reduces dynamical friction, and reverses its sign when the outflow is strong enough, in good quantitative agreement with analytic calculations. For a strong isotropic outflow, the outcome on scales that we have simulated is a negative dynamical friction, i.e. net acceleration. For jet-like outflows driven by reprocessed accretion, both the rate of accretion and the magnitude of dynamical friction drop for more powerful jets. The accretion rate is strongly intermittent when the jet points to the same direction as the motion of the compact object. The dynamical effects of outflows may be important for the evolution of compact objects during the common envelope phase of binary systems, and for accreting compact objects and massive stars encountering active galactic nucleus discs.


1989 ◽  
Vol 8 ◽  
pp. 155-159
Author(s):  
R. E. Taam

AbstractThe current understanding of the common envelope binary phase of evolution is presented. The results obtained from the detailed computations of the hydrodynamical evolution of this phase demonstrate that the deposition of energy by the double core via frictional processes is sufficiently rapid to drive a mass outflow, primarily in the equatorial plane of the binary system. Specifically, recent calculations suggest that large amounts of mass and angular momentum can be lost from the binary system in a such a phase. Since the time scale for mass loss at the final phase of evolution is much shorter than the orbital decay time scale of the companion, the tranformation of binary systems from long orbital periods (> month) to short orbital periods (< day) is likely. The energy efficiency factor for the process is estimated to lie in the range between 0.3 and 0.6.


1980 ◽  
Vol 88 ◽  
pp. 271-286 ◽  
Author(s):  
Margherita Hack ◽  
Umberto Flora ◽  
Paolo Santin

The common peculiarities of these two systems are: a) the companion is a massive object (probably m2≥10) whose spectrum is not observable; b) both systems show evidence, though in different degrees, of mass-transfer and mass-loss; c) both present, in different degrees, hydrogen deficiency; d) ultraviolet observations have shown, in both cases, the presence of lines of highly ionized elements like N V, C IV, Si IV, probably formed in an extended envelope because they do not show orbital radial velocity shifts, and cannot be explained by the effective temperature of the star whose spectrum we observe. The latter property seems to be common to several close binaries, as shown by the ultraviolet observations with IUE by Plavec and Koch (1979); e) both systems present infrared excess, suggesting the presence of an extended envelope (Gehrz et al. 1974; Lee and Nariai, 1967; Humphreys and Ney, 1974; Treffers et al. 1976).


Author(s):  
Binyamin V Naiman ◽  
Efrat Sabach ◽  
Avishai Gilkis ◽  
Noam Soker

Abstract We simulate the evolution of binary systems with a massive primary star of 15M⊙ where we introduce an enhanced mass loss due to jets that the secondary star might launch, and find that in many cases the enhanced mass loss brings the binary system to experience the grazing envelope evolution (GEE) and form a progenitor of Type IIb supernova (SN IIb). The jets, the Roche lobe overflow (RLOF), and a final stellar wind remove most of the hydrogen-rich envelope, leaving a blue-compact SN IIb progenitor. In many cases without this jet-driven mass loss the system enters a common envelope evolution (CEE) and does not form a SN IIb progenitor. We use the stellar evolutionary code MESA binary and mimic the jet-driven mass loss with a simple prescription and some free parameters. Our results show that the jet-driven mass loss, that some systems have during the GEE, increases the parameter space for stellar binary systems to form SN IIb progenitors. We estimate that the binary evolution channel with GEE contributes about a quarter of all SNe IIb, about equal to the contribution of each of the other three channels, binary evolution without a GEE, fatal CEE (where the secondary star merges with the core of the giant primary star), and the single star channel.


1979 ◽  
Vol 83 ◽  
pp. 383-399
Author(s):  
Janusz Ziółkowski

Three situations involving mass loss from binary systems are discussed. (1) Non-conservative mass exchange in semi-detached binaries. No quantitative estimate of this mechanism is possible at present. (2) Common envelope binaries. There are both theoretical and observational indications that this phase of evolution happens to many systems, even to some that are not very close initially (orbital periods ~ years). (3) Stellar winds in binaries. Observational evidence suggests that stellar winds from components of close binaries (especially semi-detached) are significantly stronger than from single stars at the same location in the H-R diagram. Theoretical arguments indicate that in some cases stellar wind may stabilize the component of a binary against the Roche lobe overflow. In some cases there is weak evidence of an anisotropy in the stellar wind.


2012 ◽  
Vol 08 ◽  
pp. 209-219 ◽  
Author(s):  
MAXIM V. BARKOV

In this paper we propose a new plausible mechanism of supernova explosions specific to close binary systems. The starting point is the common envelope phase in the evolution of a binary consisting of a red super giant and a neutron star. As the neutron star spirals towards the center of its companion it spins up via disk accretion. Depending on the specific angular momentum of gas captured by the neutron star via the Bondi-Hoyle mechanism, it may reach millisecond periods either when it is still inside the common envelope or after it has merged with the companion core. The high accretion rate may result in strong differential rotation of the neutron star and generation of a magnetar-strength magnetic field. The magnetar wind can blow away the common envelope if its magnetic field is as strong as 1015 G, and can destroy the entire companion if it is as strong as 1016 G. The total explosion energy can be comparable to the rotational energy of a millisecond pulsar and reach 1052 erg. The result is an unusual type-II supernova with very high luminosity during the plateau phase, followed by a sharp drop in brightness and a steep light-curve tail. The remnant is either a solitary magnetar or a close binary involving a Wolf-Rayet star and a magnetar. When this Wolf-Rayet star explodes this will be a third supernovae explosion in the same binary. A particularly interesting version of the binary progenitor involves merger of a red super giant star with an ultra-compact companion, neutron star or black hole. In the case if a strong magnetic field is not generated on the surface of a neutron star then it will collapse to a black hole. After that we expect the formation of a very long-lived accretion disk around the black hole. The Blandford-Znajek driven jet from this black hole may drive not only hypernovae explosion but produce a bright X-ray transient event on a time scale of 104 s.


Sign in / Sign up

Export Citation Format

Share Document