Large-Scale ECR-CVD Preparation of Integrated Thin-Film Structures For Space Applications

Author(s):  
Roman V. Kruzelecky ◽  
Asoke K. Ghosh ◽  
Ethel Poiré ◽  
Darius Nikanpour
Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1099
Author(s):  
Ye-Ji Han ◽  
Se Hyeong Lee ◽  
So-Young Bak ◽  
Tae-Hee Han ◽  
Sangwoo Kim ◽  
...  

Conventional sol-gel solutions have received significant attention in thin-film transistor (TFT) manufacturing because of their advantages such as simple processing, large-scale applicability, and low cost. However, conventional sol-gel processed zinc tin oxide (ZTO) TFTs have a thermal limitation in that they require high annealing temperatures of more than 500 °C, which are incompatible with most flexible plastic substrates. In this study, to overcome the thermal limitation of conventional sol-gel processed ZTO TFTs, we demonstrated a ZTO TFT that was fabricated at low annealing temperatures of 350 °C using self-combustion. The optimized device exhibited satisfactory performance, with μsat of 4.72 cm2/V∙s, Vth of −1.28 V, SS of 0.86 V/decade, and ION/OFF of 1.70 × 106 at a low annealing temperature of 350 °C for one hour. To compare a conventional sol-gel processed ZTO TFT with the optimized device, thermogravimetric and differential thermal analyses (TG-DTA) and X-ray photoelectron spectroscopy (XPS) were implemented.


2021 ◽  
pp. 2100603
Author(s):  
Min Qian ◽  
Xiaojun Mao ◽  
Min Wu ◽  
Zhangyi Cao ◽  
Qing Liu ◽  
...  

2014 ◽  
Vol 16 (6) ◽  
pp. 065701 ◽  
Author(s):  
Richard Koops ◽  
Petro Sonin ◽  
Marijn van Veghel ◽  
Omar El Gawhary
Keyword(s):  

Soft Matter ◽  
2006 ◽  
Vol 2 (12) ◽  
pp. 1089-1094 ◽  
Author(s):  
Violetta Olszowka ◽  
Markus Hund ◽  
Volker Kuntermann ◽  
Sabine Scherdel ◽  
Larisa Tsarkova ◽  
...  

2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Anna Samoilova ◽  
Alexander Nepomnyashchy

Abstract A novel type of Marangoni convection was predicted theoretically a decade ago. The thin liquid film atop a substrate of low thermal conductivity was considered. In the case of heating from below, the Marangoni convection emerges not only in a conventional stationary regime, but also as oscillatory flows. Specifically, the oscillatory Marangoni convection emerges if (1) the heat flux from the free surface is small, and (2) the large-scale deformation of the free surface is allowed. During the past decade, this novel Marangoni convection was detected and investigated in several other theoretical works. The review discusses the recent achievements in studying the oscillatory Marangoni convection in a thin film heated from below. The guiding data for observation of the oscillatory regime are also provided.


Author(s):  
Richard J. Anthony ◽  
John P. Clark ◽  
Stephen W. Kennedy ◽  
John M. Finnegan ◽  
Dean Johnson ◽  
...  

This paper describes a large scale heat flux instrumentation effort for the AFRL HIT Research Turbine. The work provides a unique amount of high frequency instrumentation to acquire fast response unsteady heat flux in a fully rotational, cooled turbine rig along with unsteady pressure data to investigate thermal loading and unsteady aerodynamic airfoil interactions. Over 1200 dynamic sensors are installed on the 1 & 1/2 stage turbine rig. Airfoils include 658 double-sided thin film gauges for heat flux, 289 fast-response Kulite pressure sensors for unsteady aerodynamic measurements, and over 40 thermocouples. An overview of the instrumentation is given with in-depth focus on the non-commercial thin film heat transfer sensors designed and produced in the Heat Flux Instrumentation Laboratory at WPAFB. The paper further describes the necessary upgrade of data acquisition systems and signal conditioning electronics to handle the increased channel requirements of the HIT Research Turbine. More modern, reliable, and efficient data processing and analysis code provides better handling of large data sets and allows easy integration with the turbine design and analysis system under development at AFRL. Example data from cooled transient blowdown tests in the TRF are included along with measurement uncertainty.


Sign in / Sign up

Export Citation Format

Share Document