scholarly journals Performance Improvement of ZnSnO Thin-Film Transistors with Low-Temperature Self-Combustion Reaction

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1099
Author(s):  
Ye-Ji Han ◽  
Se Hyeong Lee ◽  
So-Young Bak ◽  
Tae-Hee Han ◽  
Sangwoo Kim ◽  
...  

Conventional sol-gel solutions have received significant attention in thin-film transistor (TFT) manufacturing because of their advantages such as simple processing, large-scale applicability, and low cost. However, conventional sol-gel processed zinc tin oxide (ZTO) TFTs have a thermal limitation in that they require high annealing temperatures of more than 500 °C, which are incompatible with most flexible plastic substrates. In this study, to overcome the thermal limitation of conventional sol-gel processed ZTO TFTs, we demonstrated a ZTO TFT that was fabricated at low annealing temperatures of 350 °C using self-combustion. The optimized device exhibited satisfactory performance, with μsat of 4.72 cm2/V∙s, Vth of −1.28 V, SS of 0.86 V/decade, and ION/OFF of 1.70 × 106 at a low annealing temperature of 350 °C for one hour. To compare a conventional sol-gel processed ZTO TFT with the optimized device, thermogravimetric and differential thermal analyses (TG-DTA) and X-ray photoelectron spectroscopy (XPS) were implemented.

1999 ◽  
Vol 596 ◽  
Author(s):  
David Liu ◽  
Steve Makl ◽  
Robert H. Heistand

AbstractNiobium-doped lead zircomate titanate (PNZT) thin film dielectric material has been produced on a large scale using a thick-coating sol-gel process. The material has been applied to the fabrication of commercial integrated capacitor array devices. Compared to conventional processes, this low-cost, long-shelf-life procedure had at least a 4-fold processing time enhancement. The specific capacitance of 2500 nF/cm2 and integrated density of over 200 component/cm2 have been demonstrated. The frequency domain capacitance measurement of integrated PNZT capacitors exhibits a frequency-independent behavior up to 2 GHz when a DC bias is applied. Leakage-voltage dependence follows the space-charge-limited-current (SCLC) mechanism. The fabricated integrated capacitor arrays pass the industrial standard of reliability for discrete multilayer capacitors.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 200
Author(s):  
Do Won Kim ◽  
Hyeon Joong Kim ◽  
Changmin Lee ◽  
Kyoungdu Kim ◽  
Jin-Hyuk Bae ◽  
...  

Sol-gel processed SnO2 thin-film transistors (TFTs) were fabricated on SiO2/p+ Si substrates. The SnO2 active channel layer was deposited by the sol-gel spin coating method. Precursor concentration influenced the film thickness and surface roughness. As the concentration of the precursor was increased, the deposited films were thicker and smoother. The device performance was influenced by the thickness and roughness of the SnO2 active channel layer. Decreased precursor concentration resulted in a fabricated device with lower field-effect mobility, larger subthreshold swing (SS), and increased threshold voltage (Vth), originating from the lower free carrier concentration and increase in trap sites. The fabricated SnO2 TFTs, with an optimized 0.030 M precursor, had a field-effect mobility of 9.38 cm2/Vs, an SS of 1.99, an Ion/Ioff value of ~4.0 × 107, and showed enhancement mode operation and positive Vth, equal to 9.83 V.


RSC Advances ◽  
2020 ◽  
Vol 10 (70) ◽  
pp. 42682-42687
Author(s):  
Ting-Ruei Lin ◽  
Li-Chung Shih ◽  
Po-Jen Cheng ◽  
Kuan-Ting Chen ◽  
Jen-Sue Chen

Photonic potentiation and electric depression are realized in a ZTO thin film transistor for the application in neuromorphic computation.


2012 ◽  
Vol 512-515 ◽  
pp. 1736-1739
Author(s):  
Li Li Zhang ◽  
Guo Qiang Tan ◽  
Meng Cheng ◽  
Hui Jun Ren ◽  
Ao Xia

Fe(NO3)3•9H2O and Bi(NO3)3•5H2O were used as raw materials. BiFeO3 thin films were prepared by sol-gel method. The effects of annealing temperatures on the morphology and dielectric property of the thin films were studied. XRD results show that the multi-crystal thin films with pure phase are obtained when annealed at 500°C and 550°C. But annealing at 580°C will lead to the appearance of Bi2.46Fe5O12 phase.AFM images show that as the increase of annealing temperatures the surface toughness of the thin film is decreased, but the surface undulation of the thin films is decreased gradually. Within the frequency range of 1KHz~1MHz, the dielectric constant of BiFeO3 thin films is kept over 125 and it does not change very much from 500°C to 580°C. Annealed at 550°C, the BiFeO3 thin films with the lower loss are obtained. At 1MHz, the dielectric loss is 0.12.


1993 ◽  
Vol 297 ◽  
Author(s):  
Byung Chul Ahn ◽  
Jeong Hyun Kim ◽  
Dong Gil Kim ◽  
Byeong Yeon Moon ◽  
Kwang Nam Kim ◽  
...  

The hydrogenation effect was studied in the fabrication of amorphous silicon thin film transistor using APCVD technique. The inverse staggered type a-Si TFTs were fabricated with the deposited a-Si and SiO2 films by the atmospheric pressure (AP) CVD. The field effect mobility of the fabricated a-Si TFT is 0.79 cm2/Vs and threshold voltage is 5.4V after post hydrogenation. These results can be applied to make low cost a-Si TFT array using an in-line APCVD system.


2021 ◽  
Vol 23 (09) ◽  
pp. 1078-1085
Author(s):  
A. Kanni Raj ◽  

Indium Lead Oxide (ILO) based Metal Oxide Thin Film Transistor (MOTFT) is fabricated with Lead Barium Zirconate (PBZ) gate dielectric. PBZ is formed over doped silicon substrate by cheap sol-gel process. Thin film PBZ is analysed with X-ray Diffraction (XRD), Ultra-Violet Visible Spectra (UV-Vis) and Atomic Force Microscope (AFM). IZO is used as bottom gate to contact Thin Film Transistor (TFT). This device needs only 5V as operating voltage, and so is good for lower electronics <40V. It shows excellent emobility 4.5cm2/V/s, with on/off ratio 5×105 and sub-threshold swing 0.35V/decade.


2013 ◽  
Vol 62 (8) ◽  
pp. 1176-1182 ◽  
Author(s):  
Jong Hoon Lee ◽  
Chang Hoi Kim ◽  
Hong Seung Kim ◽  
Jae Hoon Park ◽  
Jin Hwa Ryu ◽  
...  

2020 ◽  
Author(s):  
M Abdul Kaiyum ◽  
Naim Ahmed ◽  
Arif Alam ◽  
M Shamimur Rahman

Abstract Yttrium (Y) doped and pure Titanium Di-oxide (TiO2) thin films were prepared by using spin coater. The coater was set up in laboratory with low cost investment. The films were calcined at 450 °C for 1 hour. For characterization, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Atomic Force Microscopy (AFM) were carried out. LCR Bridge - GW Instek LCR-821 was used for gas sensing applications. XPS showed that the change of electronic structure due to Y doping. SEM and AFM analysis were carried out to determine the surface morphology of the films. Yttrium (Y) decreased the crystallite size of the films and increased the surface roughness and porosity value, which was very good for many sensing applications. Gas sensing property of the deposited films were improved by the incorporation of yttrium impurities and the sensing property improved almost two times than pure TiO2 thin film. Different researches have been done their research related to this topic but no one researchers provide a precise explanation of their results, authors of this research have tried to do that. Moreover the films were prepared by a simple spin coater to reduce the production cost also.


Sign in / Sign up

Export Citation Format

Share Document