scholarly journals The oscillatory longwave Marangoni convection in a thin film heated from below

2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Anna Samoilova ◽  
Alexander Nepomnyashchy

Abstract A novel type of Marangoni convection was predicted theoretically a decade ago. The thin liquid film atop a substrate of low thermal conductivity was considered. In the case of heating from below, the Marangoni convection emerges not only in a conventional stationary regime, but also as oscillatory flows. Specifically, the oscillatory Marangoni convection emerges if (1) the heat flux from the free surface is small, and (2) the large-scale deformation of the free surface is allowed. During the past decade, this novel Marangoni convection was detected and investigated in several other theoretical works. The review discusses the recent achievements in studying the oscillatory Marangoni convection in a thin film heated from below. The guiding data for observation of the oscillatory regime are also provided.

Fluids ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 198
Author(s):  
Mohammad Irshad Khodabocus ◽  
Mathieu Sellier ◽  
Volker Nock

The evolution of a thin liquid film subject to a volatile solvent source and an air-blow effect which modifies locally the surface tension and leads to Marangoni-induced flow is shown to be governed by a degenerate fourth order nonlinear parabolic h-evolution equation of the type given by ∂ t h = − div x M 1 h ∂ x 3 h + M 2 h ∂ x h + M 3 h , where the mobility terms M 1 h and M 2 h result from the presence of the source and M 3 h results from the air-blow effect. Various authors assume M 2 h ≈ 0 and exclude the air-blow effect into M 3 h . In this paper, the authors show that such assumption is not necessarily correct, and the inclusion of such effect does disturb the dynamics of the thin film. These emphasize the importance of the full definition t → · grad γ = grad x γ + ∂ x h grad y γ of the surface tension gradient at the free surface in contrast to the truncated expression t → · grad γ ≈ grad x γ employed by those authors and the effect of the air-blow flowing over the surface.


1998 ◽  
Vol 372 ◽  
pp. 301-322 ◽  
Author(s):  
O. E. JENSEN

A localized, insoluble, surfactant monolayer, spreading under the action of surface-tension gradients over a thin liquid film, has at its leading edge an integrable stress singularity which renders conventional thin-film approximations locally non-uniform. Here high-Reynolds-number asymptotics are used to explore the quasi-steady two-dimensional developing flow near the monolayer tip, assuming that gravity keeps the free surface almost flat, that weak ‘contaminant’ surfactant regularizes the singularity and that the monolayer spreads fast enough for inertial effects to be important in a region which is long compared to the film depth but which is short compared to the length of the monolayer. It is shown how downward displacement of the inviscid core flow by the subsurface viscous boundary layer yields a non-uniform pressure distribution which, when the monolayer is spreading fast enough for cross-stream pressure gradients to be significant at its tip, creates a short free-surface hump which is the thin-film version of a Reynolds ridge. The ridge and other singular flow structures are smoothed as the monolayer slows and levels of contaminant are increased. The conditions under which lubrication theory provides a uniformly accurate approximation for this class of surfactant-spreading flows are established.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Satyananda Panda ◽  
Mathieu Sellier ◽  
M. C. S. Fernando ◽  
M. K. Abeyratne

The flow of a thin liquid film over a heated stretching surface is considered in this study. Due to a potential nonuniform temperature distribution on the stretching sheet, a temperature gradient occurs in the fluid which produces surface tension gradient at the free surface of the thin film. As a result, the free surface deforms and these deformations are advected by the flow in the stretching direction. This work focuses on the inverse problem of reconstructing the sheet temperature distribution and the sheet stretch rate from observed free surface variations. This work builds on the analysis of Santra and Dandapat (2009) who, based on the long-wave expansion of the Navier-Stokes equations, formulate a partial differential equation which describes the evolution of the thickness of a film over a nonisothermal stretched surface. In this work, we show that after algebraic manipulation of a discrete form of the governing equations, it is possible to reconstruct either the unknown temperature field on the sheet and hence the resulting heat transfer or the stretching rate of the underlying surface. We illustrate the proposed methodology and test its applicability on a range of test problems.


2013 ◽  
Vol 735 ◽  
pp. 29-60 ◽  
Author(s):  
Pascal Noble ◽  
Jean-Paul Vila

AbstractIn this paper we derive consistent shallow-water equations for the flow of thin films of power-law fluids down an incline. These models account for the streamwise diffusion of momentum, which is important to describe accurately the full dynamics of thin-film flows when instabilities such as roll waves arise. These models are validated through a comparison with the Orr–Sommerfeld equations for large-scale perturbations. We consider only laminar flow for which the boundary layer issued from the interaction of the flow with the bottom surface has an influence all over the transverse direction to the flow. In this case the concept itself of a thin film and its relation with long-wave asymptotics leads naturally to flow conditions around a uniform free-surface Poiseuille flow. The apparent viscosity diverges at the free surface, which, in turn, introduces a singularity in the formulation of the Orr–Sommerfeld equations and in the derivation of shallow-water models. We remove this singularity by introducing a weaker formulation of the Cauchy momentum equations. No regularization procedure is needed, nor any distinction between shear thinning and thickening cases. Our analysis, though, is only valid when the flow behaviour index $n$ is larger than $1/ 2$, and strongly suggests that the Cauchy momentum equations are ill-posed if $n\leq 1/ 2$.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


2020 ◽  
Author(s):  
Lungwani Muungo

The purpose of this review is to evaluate progress inmolecular epidemiology over the past 24 years in canceretiology and prevention to draw lessons for futureresearch incorporating the new generation of biomarkers.Molecular epidemiology was introduced inthe study of cancer in the early 1980s, with theexpectation that it would help overcome some majorlimitations of epidemiology and facilitate cancerprevention. The expectation was that biomarkerswould improve exposure assessment, document earlychanges preceding disease, and identify subgroupsin the population with greater susceptibility to cancer,thereby increasing the ability of epidemiologic studiesto identify causes and elucidate mechanisms incarcinogenesis. The first generation of biomarkers hasindeed contributed to our understanding of riskandsusceptibility related largely to genotoxic carcinogens.Consequently, interventions and policy changes havebeen mounted to reduce riskfrom several importantenvironmental carcinogens. Several new and promisingbiomarkers are now becoming available for epidemiologicstudies, thanks to the development of highthroughputtechnologies and theoretical advances inbiology. These include toxicogenomics, alterations ingene methylation and gene expression, proteomics, andmetabonomics, which allow large-scale studies, includingdiscovery-oriented as well as hypothesis-testinginvestigations. However, most of these newer biomarkershave not been adequately validated, and theirrole in the causal paradigm is not clear. There is a needfor their systematic validation using principles andcriteria established over the past several decades inmolecular cancer epidemiology.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


Sign in / Sign up

Export Citation Format

Share Document