Environmentally induced variation in uric acid concentration and xanthine dehydrogenase activity in Littorina saxatilis (Olivi) and L. arcana Hannaford Ellis

1995 ◽  
pp. 111-116
Author(s):  
Delmont C. Smith ◽  
Peter J. Mill ◽  
J. Grahame
2006 ◽  
Vol 34 (01) ◽  
pp. 77-85 ◽  
Author(s):  
Guang-Liang Chen ◽  
Wei Wei ◽  
Shu-Yun Xu

In this study, we investigated the effects and mechanisms of Total Saponin of Dioscorea (TSD) on animal experimental hyperuricemia. Mouse and rat hyperuricemic models were made by orally administering yeast extract paste once a day (30 and 20 g/kg, respectively), for 7 days. Yeast would disturb normal purine metabolism by increasing xanthine oxidase (XOD) activity and generating large quantities of uric acid. This model is similar to human hyperuricemia, which is induced by high-protein diets, due to a purine and nucleic acid metabolic disturbance. Another mouse hyperuricemia model was generated by intraperitoneal injection once with uric acid 250 mg/kg or potassium oxonate 300 mg/kg. Potassium oxonate, a urate oxidase inhibitor, can raise the serum uric acid level by inhibiting the decomposition of uric acid. Likewise, injecting uric acid can also increase serum uric acid concentration. The concentration of uric acid in serum or urine was detected by the phosphotungstic acid method, and the activity of XOD was assayed by a test kit. The results showed that TSD (240, 120 and 60 mg/kg, ig) could significantly lower the level of serum uric acid in hyperuricemic mice. TSD (120 and 60 mg/kg, ig) could also lower the level of serum uric acid in hyperuricemic rats, reduce the activity of XOD in the serum and liver of hyperuricemic rats, and increase the level of urine uric acid concentration as well as 24-hour total uric acid excretion. In conclusion, TSD possesses a potent anti-hyperuricemic effect on hyperuricemic animals, and the mechanism may be relevant in accelerating the excretion and decreasing the production of uric acid.


1971 ◽  
Vol 49 (12) ◽  
pp. 1059-1062 ◽  
Author(s):  
S. T. Chou

Day-old broiler chicks of both sexes were used in three experiments to determine the effect of riboflavin deficiency on oxypurine metabolism catalyzed by xanthine dehydrogenase, a riboflavin-containing enzyme. Chicks fed a riboflavin-deficient diet (1.38 mg/kg) for 3 weeks exhibited depressed growth and a high incidence of curled-toe paralysis (higher than 80%) as compared to control chicks (15.1 mg riboflavin per kilogram diet; no incidence of curled-toe paralysis). In addition, the precursors of uric acid, hypoxanthine and/or xanthine, accumulated in the liver and kidney of deficient chicks showing curled-toe paralysis. These observations show that dietary riboflavin being incorporated into xanthine dehydrogenase is essential for oxypurine metabolism. Moreover in the chick, the liver and the kidney may be important sites of uric acid synthesis. The low uric acid concentration in the plasma of the deficient chicks appeared to be indicative of a disturbance in uric acid synthesis in the liver and kidney.


The Lancet ◽  
2008 ◽  
Vol 372 (9654) ◽  
pp. 1953-1961 ◽  
Author(s):  
Abbas Dehghan ◽  
Anna Köttgen ◽  
Qiong Yang ◽  
Shih-Jen Hwang ◽  
WH Linda Kao ◽  
...  

2017 ◽  
Vol 473 ◽  
pp. 160-165 ◽  
Author(s):  
Cai-Feng Yue ◽  
Pin-Ning Feng ◽  
Zhen-Rong Yao ◽  
Xue-Gao Yu ◽  
Wen-bin Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document