A Tracer Study of the Thermohaline Circulation of the Eastern Mediterranean

Author(s):  
Wolfgang Roether ◽  
Vassil M. Roussenov ◽  
Roland Well
2021 ◽  
Vol 14 (6) ◽  
pp. 3995-4017
Author(s):  
Cléa Denamiel ◽  
Petra Pranić ◽  
Damir Ivanković ◽  
Iva Tojčić ◽  
Ivica Vilibić

Abstract. In this evaluation study, the coupled atmosphere–ocean Adriatic Sea and Coast (AdriSC) climate model, which was implemented to carry out 31-year evaluation and climate projection simulations in the Adriatic and northern Ionian seas, is briefly presented. The kilometre-scale AdriSC atmospheric results, derived with the Weather Research and Forecasting (WRF) 3 km model for the 1987–2017 period, are then thoroughly compared to a comprehensive publicly and freely available observational dataset. The evaluation shows that overall, except for the summer surface temperatures, which are systematically underestimated, the AdriSC WRF 3 km model has a far better capacity to reproduce surface climate variables (and particularly the rain) than the WRF regional climate models at 0.11∘ resolution. In addition, several spurious data have been found in both gridded products and in situ measurements, which thus should be used with care in the Adriatic region for climate studies at local and regional scales. Long-term simulations with the AdriSC climate model, which couples the WRF 3 km model with a 1 km ocean model, might thus be a new avenue to substantially improve the reproduction, at the climate scale, of the Adriatic Sea dynamics driving the Eastern Mediterranean thermohaline circulation. As such it may also provide new standards for climate studies of orographically developed coastal regions in general.


2021 ◽  
Vol 8 ◽  
Author(s):  
Angeliki Sampatakaki ◽  
Vassilis Zervakis ◽  
Ioannis Mamoutos ◽  
Elina Tragou ◽  
Alexandra Gogou ◽  
...  

The internal variability of the thermohaline circulation of the Mediterranean Sea is examined under contrasting extreme thermal and mass atmospheric forcing conditions. Three millennium-long numerical simulation experiments were performed under: (a) the current climatology, (b) a strong buoyancy forcing (SBF) scenario due to cold and dry conditions resembling the Younger Dryas event, and (c) a weak buoyancy forcing (WBF) scenario due to S1a sapropel deposition-like conditions (warm and wet). To isolate the inherent variability of the system, independent of interannual atmospheric forcing variability, the latter was defined as a perpetual year pertinent to each experiment. Self-diagnosed heat and salt fluxes, consistent to sea-surface characteristics of the above periods, forced three millenium-long, relaxation-free numerical experiments. These simulations were preceded by initial spin-up periods. The inherent spatiotemporal variability of the Mediterranean Sea was analyzed using the empirical orthogonal function (EOF) and spectral analysis on the simulated density fields. Our results revealed that the Mediterranean Sea exhibits high sensitivity to climatic conditions, allowing its circulation to change from anti-estuarine (for the SBF scenario, leading to a buoyancy loss to the atmosphere) to estuarine (for the WBF scenario, corresponding to a buoyancy gain from the atmosphere). In all three experiments, the interannual and decennial variabilities dominate in upper layers, and the decennial variability dominates in the Gibraltar and Sicily Straits. Under current climatic conditions the first two EOF modes express only 60% of the density variability in the deep layers. This contribution exceeds 90% under more extreme conditions. Moreover, the first EOF modes correspond to a basin-wide in-phase variability of the deep layers under the reference and WBF conditions. During SBF conditions the first modes reveal a vertical buoyancy exchange between upper and deeper layers. The second EOF mode of deep waters under both extreme scenarios showed that the western and eastern basins exchange buoyancy in decennial (for the cold/dry) and interdecennial (for the warm/humid) timescales. The residence time of the Eastern Mediterranean deep water was diagnosed to be centennial, semicentennial, and intercentennial for the cases of current period, SBF, and WBF, respectively.


2006 ◽  
Vol 66 (3) ◽  
pp. 401-420 ◽  
Author(s):  
Bernhard Weninger ◽  
Eva Alram-Stern ◽  
Eva Bauer ◽  
Lee Clare ◽  
Uwe Danzeglocke ◽  
...  

AbstractWe explore the hypothesis that the abrupt drainage of Laurentide lakes and associated rapid switch of the North Atlantic thermohaline circulation 8200 yr ago had a catastrophic influence on Neolithic civilisation in large parts of southeastern Europe, Anatolia, Cyprus, and the Near East. The event at 8200 cal yr BP is observed in a large number of high-resolution climate proxies in the Northern Hemisphere, and in many cases corresponds to markedly cold and arid conditions. We identify the relevant archaeological levels of major Neolithic settlements in Central Anatolia, Cyprus, Greece and Bulgaria, and examine published stratigraphic, architectural, cultural and geoarchaeological studies for these sites. The specific archaeological events and processes we observe at a number of these sites during the study interval 8400–8000 cal yr BP lead us to refine some previously established Neolithisation models. The introduction of farming to South-East Europe occurs in all study regions (Thrace, Macedonia, Thessaly, Bulgaria) near 8200 cal yr BP. We observe major disruptions of Neolithic cultures in the Levant, North Syria, South-East Anatolia, Central Anatolia and Cyprus, at the same time. We conclude that the 8200 cal yr BP aridity event triggered the spread of early farmers, by different routes, out of West Asia and the Near East into Greece and Bulgaria.


2014 ◽  
Vol 10 (6) ◽  
pp. 4647-4681 ◽  
Author(s):  
K. Tachikawa ◽  
L. Vidal ◽  
M. Cornuault ◽  
M. Garcia ◽  
A. Pothin ◽  
...  

Abstract. Holocene Eastern Mediterranean Sea sediments contain an organic-rich sapropel S1 layer that was formed in oxygen-depleted waters. The spatial distribution of this layer revealed that during S1 deposition deep waters were permanently anoxic below 1800 m in water depth. To provide further insight into past Eastern Mediterranean Sea circulation, a multi-proxy approach was applied to a core retrieved close to the 1800 m boundary (at 1780 m). We measured the bulk sediment elemental composition, the stable isotopic composition of the planktonic foraminifer Globigerinoides ruber, and the abundance of benthic foraminifera since the last deglaciation. The result indicates that authigenic U and Mo accumulation began around 13–12 cal ka BP, in concert with surface water freshening estimated from the G. ruber δ18O record. The onset of bottom/pore water oxygen depletion occurred prior to S1 deposition inferred from barium enrichment. In the middle of the S1 deposition period, between 9 and 8 cal ka BP, reduced authigenic V, Fe and As contents and Br / Cl ratio indicated short-term bottom water re-oxygenation. A sharp Mn peak and maximal abundance for benthic foraminifera marked a total recovery for circulation at approximately 7 cal ka BP. Based on our results and existing data, we suggest that S1 formation withinthe upper 1780 m of the Eastern Mediterranean Sea was preconditioned by reduced ventilation, resulting from excess fresh water inputs due to insolation changes under deglacial conditions, that initiated between 15 and 12 ka. Short-term re-oxygenation in the Levantine Basin is estimated to have affected bottom water below and above the anoxic boundary. We tentatively propose that complete ventilation recovery at the S1 termination was attained earlier within the upper 1780 m than at deeper water depths. Our results provided new constraints for eastern Mediterranean Sea thermohaline circulation.


2000 ◽  
Vol 1 (2) ◽  
pp. 91 ◽  
Author(s):  
E. SOUVERMEZOGLOU ◽  
E. KRASAKOPOULOU

The intensive research since 1985 in the framework of national and international programmes revealed important modifications in oxygen and nutrients distribution in the Cretan Sea. The significant increase of density and of formation rates of the Cretan Dense Water (CDW) during the last decade is basically responsible for the drastic change of the thermohaline circulation and the installation of a new hydrological regime in the Eastern Mediterranean. In the Cretan Sea, the most important effect of the new regime, is the installation of a well-defined "minimum salinity, temperature, oxygen and maximum nutrient" intermediate layer formed by the intrusion of the Transitional Mediterranean Water (TMW) compensating the massive CDW outflow.The nutrient enrichment of the intermediate layers of the Cretan Sea, due to the intrusion of the "nutrient rich-oxygen poor" TMW, was observed firstly in 1991 and became very important during 1994-95. During 1994-95 the TMW occupies the intermediate layers of the entire Cretan Sea and the concentrations of nutrients in this layer are often two times higher than in the past. Recently, in 1997-98 the chemical characteristics of TMW are less pronounced probably related to the weaker CDW outflow.


2020 ◽  
Author(s):  
Kazuyo Tachikawa ◽  
Laurence Vidal ◽  
José N. Pérez-Asensio ◽  
Marta Garcia ◽  
Adnya Pratiwi ◽  
...  

<p>The Mediterranean thermohaline circulation is sensitive to ongoing climate change and generally stagnant circulation is expected by the end of the 21<sup>st</sup> century. In the past, the eastern Mediterranean Sea has experienced slower ventilation as demonstrated by rhythmic occurrence of organic-rich sediments “sapropels”. The two sapropels S1 (Holocene) and S5 (Last Interglacial) were formed under conditions of excess fresh water inputs via Nile river in relation to insolation-driven African monsoon intensification and deglacial meltwater inputs from the North Atlantic. In addition to the Nile river discharge, the paleodrainage toward Gulf of Sirte off Libya has been proposed although its contribution could be significantly different between S1 and S5 because of distinct monsoon intensification. Since the response of circulation to freshwater forcing could vary with the region of perturbation, comparison of S1 and S5 deposited in the Gulf of Sirte will provide key information on the Mediterranean ventilation sensitivity.</p><p>We applied a multi-proxy approach (bulk elemental composition by XRF scanning, redox sensitive elemental concentration, planktonic foraminiferal δ<sup>18</sup>O and benthic foraminiferal faunal assemblages) to core SL95 (32º46.46N, 19º11.46E; 1390 m water depth) from the eastern side of the Gulf of Sirte. Both S1 and S5 are marked by prominent peaks of Ba/Al and Ba/Ti with more pronounced Ba enrichment for S5. Redox sensitive elements such as U and Mo present enrichment prior to the Ba peaks that can be interpreted as reduced ventilation before sapropel deposition. However, expected reduced oxygenation is not synchronous with benthic foraminiferal faunal changes, suggesting possible remobilisation of the trace elements during sapropel interruption and/or post-sapropel oxygenation. Acquisition of high-temporal resolution data of <em>Globigerinoides ruber</em> δ<sup>18</sup>O and benthic foraminiferal assemblages is in progress. We will discuss potential influence of (partial) ventilation at intermediate water depths during sapropel interruption in association with 8.2 event and possible different freshwater inputs at S1 and S5 depositions.</p>


2017 ◽  
Vol 14 (5) ◽  
pp. 1197-1213 ◽  
Author(s):  
Mohamed Ayache ◽  
Jean-Claude Dutay ◽  
Anne Mouchet ◽  
Nadine Tisnérat-Laborde ◽  
Paolo Montagna ◽  
...  

Abstract. A high-resolution dynamical model (Nucleus for European Modelling of the Ocean, Mediterranean configuration – NEMO-MED12) was used to give the first simulation of the distribution of radiocarbon (14C) across the whole Mediterranean Sea. The simulation provides a descriptive overview of both the natural pre-bomb 14C and the entire anthropogenic radiocarbon transient generated by the atmospheric bomb tests performed in the 1950s and early 1960s. The simulation was run until 2011 to give the post-bomb distribution. The results are compared to available in situ measurements and proxy-based reconstructions. The radiocarbon simulation allows an additional and independent test of the dynamical model, NEMO-MED12, and its performance to produce the thermohaline circulation and deep-water ventilation. The model produces a generally realistic distribution of radiocarbon when compared with available in situ data. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar on the inter-basin natural radiocarbon distribution and characterize the ventilation of intermediate and deep water especially through the propagation of the anthropogenic radiocarbon signal. We explored the impact of the interannual variability on the radiocarbon distribution during the Eastern Mediterranean Transient (EMT) event. It reveals a significant increase in 14C concentration (by more than 60 ‰) in the Aegean deep water and at an intermediate level (value up to 10 ‰) in the western basin. The model shows that the EMT makes a major contribution to the accumulation of radiocarbon in the eastern Mediterranean deep waters.


Sign in / Sign up

Export Citation Format

Share Document