scholarly journals Investigation of the Inherent Variability of the Mediterranean Sea Under Contrasting Extreme Climatic Conditions

2021 ◽  
Vol 8 ◽  
Author(s):  
Angeliki Sampatakaki ◽  
Vassilis Zervakis ◽  
Ioannis Mamoutos ◽  
Elina Tragou ◽  
Alexandra Gogou ◽  
...  

The internal variability of the thermohaline circulation of the Mediterranean Sea is examined under contrasting extreme thermal and mass atmospheric forcing conditions. Three millennium-long numerical simulation experiments were performed under: (a) the current climatology, (b) a strong buoyancy forcing (SBF) scenario due to cold and dry conditions resembling the Younger Dryas event, and (c) a weak buoyancy forcing (WBF) scenario due to S1a sapropel deposition-like conditions (warm and wet). To isolate the inherent variability of the system, independent of interannual atmospheric forcing variability, the latter was defined as a perpetual year pertinent to each experiment. Self-diagnosed heat and salt fluxes, consistent to sea-surface characteristics of the above periods, forced three millenium-long, relaxation-free numerical experiments. These simulations were preceded by initial spin-up periods. The inherent spatiotemporal variability of the Mediterranean Sea was analyzed using the empirical orthogonal function (EOF) and spectral analysis on the simulated density fields. Our results revealed that the Mediterranean Sea exhibits high sensitivity to climatic conditions, allowing its circulation to change from anti-estuarine (for the SBF scenario, leading to a buoyancy loss to the atmosphere) to estuarine (for the WBF scenario, corresponding to a buoyancy gain from the atmosphere). In all three experiments, the interannual and decennial variabilities dominate in upper layers, and the decennial variability dominates in the Gibraltar and Sicily Straits. Under current climatic conditions the first two EOF modes express only 60% of the density variability in the deep layers. This contribution exceeds 90% under more extreme conditions. Moreover, the first EOF modes correspond to a basin-wide in-phase variability of the deep layers under the reference and WBF conditions. During SBF conditions the first modes reveal a vertical buoyancy exchange between upper and deeper layers. The second EOF mode of deep waters under both extreme scenarios showed that the western and eastern basins exchange buoyancy in decennial (for the cold/dry) and interdecennial (for the warm/humid) timescales. The residence time of the Eastern Mediterranean deep water was diagnosed to be centennial, semicentennial, and intercentennial for the cases of current period, SBF, and WBF, respectively.

2021 ◽  
Author(s):  
Giusy Fedele ◽  
Elena Mauri ◽  
Giulio Notarstefano ◽  
Pierre Marie Poulain

Abstract. The Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. In particular, their variability and interaction, along with other water masses that characterize the Mediterranean basin, such as the Western Mediterranean Deep Water (WMDW), contribute to modify the Mediterranean Outflow through the Gibraltar Strait and hence may influence the stability of the global thermohaline circulation. This work aims to characterize the AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. Using different diagnostics, the AW and LIW were identified, highlighting the inter-basin variability and the strong zonal gradient that characterize the two water masses in this marginal sea. Their temporal variability was also investigated focusing on trends and spectral features which constitute an important starting point to understand the mechanisms that are behind their variability. A clear salinification and warming trend have characterized the AW and LIW in the last two decades (~0.007 and 0.008 yr−1; 0.018 and 0.007 °C yr−1, respectively). The salinity and temperature trends found at subbasin scale are in good agreement with previous results. The strongest trends are found in the Adriatic basin in both the AW and LIW properties. A subbasin dependent spectral variability emerges in the AW and LIW salinity timeseries with peaks between 2 and 10 years.


2015 ◽  
Vol 12 (6) ◽  
pp. 1647-1658 ◽  
Author(s):  
G. Cossarini ◽  
P. Lazzari ◽  
C. Solidoro

Abstract. The paper provides a basin-scale assessment of the spatiotemporal distribution of alkalinity in the Mediterranean Sea. The assessment is made by integrating the available observations into a 3-D transport–biogeochemical model. The results indicate the presence of complex spatial patterns: a marked west-to-east surface gradient of alkalinity is coupled to secondary negative gradients: (1) from marginal seas (Adriatic and Aegean Sea) to the eastern Mediterranean Sea and (2) from north to south in the western region. The west–east gradient is related to the mixing of Atlantic water entering from the Strait of Gibraltar with the high-alkaline water of the eastern sub-basins, which is correlated to the positive surface flux of evaporation minus precipitation. The north-to-south gradients are related to the terrestrial input and to the input of the Black Sea water through the Dardanelles. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 μmol kg−1) that is driven by physical processes (seasonal cycle of evaporation and vertical mixing) and, to a minor extent, by biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships: in regions of freshwater influence, the two quantities are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open sea areas of the Mediterranean Sea.


2011 ◽  
Vol 8 (4) ◽  
pp. 883-899 ◽  
Author(s):  
M. Pujo-Pay ◽  
P. Conan ◽  
L. Oriol ◽  
V. Cornet-Barthaux ◽  
C. Falco ◽  
...  

Abstract. This paper provides an extensive vertical and longitudinal description of the biogeochemistry along an East-West transect of 3000 km across the Mediterranean Sea during summer 2008 (BOUM cruise). During this period of strong stratification, the distribution of nutrients, particulate and dissolved organic carbon (DOC), nitrogen (DON) and phosphorus (DOP) were examined to produce a detailed spatial and vertically extended description of the elemental stoichiometry of the Mediterranean Sea. Surface waters were depleted in nutrients and the thickness of this depleted layer increased towards the East from about 10 m in the Gulf of Lion to more than 100 m in the Levantine basin, with the phosphacline deepening to a greater extent than that for corresponding nitracline and thermocline depths. We used the minimum oxygen concentration through the water column in combination with 2 fixed concentrations of dissolved oxygen to distinguish an intermediate layer (Mineralization Layer; ML) from surface (Biogenic Layer; BL), and deep layers (DL). Whilst each layer was represented by different water masses, this approach allowed us to propose a schematic box-plot representation of the biogeochemical functioning of the two Mediterranean basins. Despite the increasing oligotrophic nature and the degree of P-depletion along the West to East gradient strong similarities were encountered between eastern and western ecosystems. Within the BL, the C:N:P ratios in all pools largely exceeded the Redfield ratios, but surprisingly, the nitrate vs. phosphate ratios in the ML and DL tended towards the canonical Redfield values in both basins. A change in particulate matter composition has been identified by a C increase relative to N and P along the whole water column in the western basin and between BL and ML in the eastern one. Our data showed a noticeable stability of the DOC:DON ratio (12–13) throughout the Mediterranean Sea. This is in good agreement with a P-limitation of microbial activities but in contradiction of the accepted concept that N is recycled faster than C. The western and eastern basins had similar or close biological functioning. Differences come from variability in the allochtonous nutrient sources in terms of quantity and quality, and to the specific hydrodynamic features of the Mediterranean basins.


Ocean Science ◽  
2014 ◽  
Vol 10 (3) ◽  
pp. 281-322 ◽  
Author(s):  
P. Malanotte-Rizzoli ◽  
V. Artale ◽  
G. L. Borzelli-Eusebi ◽  
S. Brenner ◽  
A. Crise ◽  
...  

Abstract. This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper. Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue: 1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions. 2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability. 3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution. Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries.


2021 ◽  
Vol 9 (2) ◽  
pp. 176
Author(s):  
Paolo Lazzari ◽  
Eva Álvarez ◽  
Elena Terzić ◽  
Gianpiero Cossarini ◽  
Ilya Chernov ◽  
...  

This study investigates the spatial and temporal variability of chromophoric-dissolved organic matter (CDOM) in the Mediterranean Sea. The analysis is carried out using a state-of-the-art 3D biogeochemical model. The model describes the plankton dynamics, the cycles of the most important limiting nutrients, and the particulate and dissolved pools of carbon. The source of CDOM is directly correlated to the dynamics of dissolved organic carbon (DOC) by a fixed production quota. Then CDOM degrades by photobleaching and remineralization. The main innovation of the system is the inclusion of a bio-optical radiative transfer model that computes surface upwelling irradiance, and therefore simulates remotely sensed reflectance (Rrs). Simulation results of three model configurations are evaluated using satellite Rrs, particularly at 412 nm, 443 nm, and 490 nm. All simulations show a winter minimum in Rrs for the considered bands. However, different parameterizations of DOC-release induce a different accumulation of CDOM, especially in the eastern Mediterranean, and a different Rrs signature: a more active microbial loop during summer implies a decrease of Rrs at 412 nm. We demonstrate how the usage of a bio-optical model allows us to corroborate hypotheses on CDOM-cycling based on blue–violet Rrs data, supporting the importance of this complementary data stream with respect to satellite-derived chlorophyll.


2016 ◽  
Author(s):  
M. Ayache ◽  
J.-C. Dutay ◽  
T. Arsouze ◽  
S. Révillon ◽  
J. Beuvier ◽  
...  

Abstract. An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (Nd IC) was realized in order to establish a new database and a map (using a high resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. Data were extracted from different kinds of samples: river solid discharge deposited on the shelf, sedimentary material collected on the margin or geological material outcropping above or close to a margin. Additional analyses of surface sediments were done, in order to improve this dataset in key areas (e.g., Sicilian strait). The Mediterranean margin Nd isotopic signatures vary from non-radiogenic values around the Gulf of Lions, (εNd values ~ −11) to radiogenic values around the Aegean and the Levantine sub-basins up to +6. Using a high resolution regional oceanic model (1/12° of horizontal resolution), εNd distribution was simulated for the first time in the Mediterranean Sea. The high resolution of the model provides the unique opportunity to represent a realistic thermohaline circulation in the basin and thus apprehend the processes governing the Nd isotope distribution in the marine environment. Results reinforce the preceding conclusions on boundary exchange “BE” as an important process in the Nd oceanic cycle. Nevertheless the present approach simulates a slightly too radiogenic value in the Med Sea, this bias will likely be corrected once the dust and river inputs will be included in the model. This work highlights that a significant interannual variability of εNd distribution in seawater could occur. In particular, important hydrological events such as the Eastern Mediterranean Transient (EMT), associated with deep water formed in the Aegean sub-basin, could induce a shift in εNd at deep/intermediate depths that could be noticeable in the Eastern part of the basin. This underlines that the temporal and geographical variations of εNd could represent an interesting insight of Nd as tracer of the Mediterranean Sea circulation, in particular in the context of paleo-oceanographic applications.


2016 ◽  
Vol 13 (18) ◽  
pp. 5259-5276 ◽  
Author(s):  
Mohamed Ayache ◽  
Jean-Claude Dutay ◽  
Thomas Arsouze ◽  
Sidonie Révillon ◽  
Jonathan Beuvier ◽  
...  

Abstract. An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (Nd IC) was realized in order to establish a new database and a map (using a high-resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. Data were extracted from different kinds of samples: river solid discharge deposited on the shelf, sedimentary material collected on the margin or geological material outcropping above or close to a margin. Additional analyses of surface sediments were done in order to improve this data set in key areas (e.g. Sicilian strait). The Mediterranean margin Nd isotopic signatures vary from non-radiogenic values around the Gulf of Lion, (εNd values  ∼  −11) to radiogenic values around the Aegean and the Levantine sub-basins up to +6. Using a high-resolution regional oceanic model (1/12° of horizontal-resolution), εNd distribution was simulated for the first time in the Mediterranean Sea. The high resolution of the model provides a unique opportunity to represent a realistic thermohaline circulation in the basin and thus apprehend the processes governing the Nd isotope distribution in the marine environment. Results are consistent with the preceding conclusions on boundary exchange (BE) as an important process in the Nd oceanic cycle. Nevertheless this approach simulates a too-radiogenic value in the Mediterranean Sea; this bias will likely be corrected once the dust and river inputs will be included in the model. This work highlights that a significant interannual variability of εNd distribution in seawater could occur. In particular, important hydrological events such as the Eastern Mediterranean Transient (EMT), associated with deep water formed in the Aegean sub-basin, could induce a shift in εNd at deep/intermediate depths that could be noticeable in the eastern part of the basin. This underlines that the temporal and geographical variations of εNd could represent an interesting insight of Nd as tracer of the Mediterranean Sea circulation, in particular in the context of palaeo-oceanographic applications.


2021 ◽  
pp. 1-12
Author(s):  
Zalmen Henkin

Abstract Encroachment of woody plants into grasslands and subsequent brush management are among the most prominent changes occurring in arid and semiarid ecosystems over the past century. The reduced number of farms, the abandonment of marginal land and the decline of traditional farming practices have led to encroachment of the woody and shrubby components into grasslands. This phenomenon, specifically in the Mediterranean region, which is followed by a reduction in herbage production, biodiversity and increased fire risk, is generally considered an undesirable process. Sarcopoterium spinosum has had great success in the eastern Mediterranean as a colonizer and dominant bush species on a wide variety of sites and climatic conditions. In the Mediterranean dehesa, the high magnitude and intensity of shrub encroachment effects on pastures and on tree production were shown to be dependent on temporal variation. Accordingly, there are attempts to transform shrublands into grassland-woodland matrices by using different techniques. The main management interventions that are commonly used include grazing, woodcutting, shrub control with herbicides or by mechanical means, amelioration of plant mineral deficits in the soil, and fire. However, the effects of these various treatments on the shrubs under diverse environmental conditions were found to be largely context-specific. As such, the most efficient option for suppressing encroachment of shrubs is combining different interventions. Appropriate management of grazing, periodic control of the shrub component, and occasional soil nutrient amelioration can lead to the development of attractive open woodland with a productive herbaceous understory that provides a wider range of ecological services.


Jurnal Hukum ◽  
2020 ◽  
Vol 36 (2) ◽  
pp. 126
Author(s):  
Edanur Yıldız

Turkey and Greece are again dragged into a new conflict in the East Mediterranean. Turkey and Greece vie for supremacy in the eastern Mediterranean. Turkey, for its part, indicated that Greece's claim to the territory would amount to a siege in the country by giving Greece a disproportionate amount of territory. This study aims to rethink the conflict between Greece and Turkey in the waters of the Mediterranean sea in the view of international maritime law. This study uses an empirical juridical approach. The Result of this research is Turkey does not ignore the Greece rights, Greece ignores the international law with its extended or excessive maritime claims. Greece tries to give full entitlement of the islands in Mediterranean and Agean. Whereas the effect Formula is applied by international courts.


ALGAE ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 175-193
Author(s):  
Moufida Abdennadher ◽  
Amel Bellaaj Zouari ◽  
Walid Medhioub ◽  
Antonella Penna ◽  
Asma Hamza

This study provides the first report of the presence of Coolia malayensis in the Mediterranean Sea, co-occurring with C. monotis. Isolated strains from the Gulf of Gabès, Tunisia (South-eastern Mediterranean) were identified by morphological characterization and phylogenetic analysis. Examination by light and scanning electron microscopy revealed no significant morphological differences between the Tunisian isolates and other geographically distant strains of C. monotis and C. malayensis. Phylogenetic trees based on ITS1-5.8S-ITS2 and D1‒D3/28S rDNA sequences showed that C. monotis strains clustered with others from the Mediterranean and Atlantic whereas the C. malayensis isolate branched with isolates from the Pacific and the Atlantic, therefore revealing no geographical trend among C. monotis and C. malayensis populations. Ultrastructural analyses by transmission electron microscopy revealed the presence of numerous vesicles containing spirally coiled fibers in both C. malayensis and C. monotis cells, which we speculate to be involved in mucus production.


Sign in / Sign up

Export Citation Format

Share Document