Growth of a Round Jet, under Local Reynolds Number Gradients

Author(s):  
Panos N. Papanicolaou ◽  
Morteza Gharib
Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 185
Author(s):  
Zuzana Antošová ◽  
Zdeněk Trávníček

This paper deals with active control of a continuous jet issuing from a long pipe nozzle by means of a concentrically placed annular synthetic jet. The experiments in air cover regimes of laminar, transitional, and turbulent main jet flows (Reynolds number ranges 1082–5181). The velocity profiles (time-mean and fluctuation components) of unforced and forced jets were measured using hot-wire anemometry. Six flow regimes are distinguished, and their parameter map is proposed. The possibility of turbulence reduction by forcing in transitional jets is demonstrated, and the maximal effect is revealed at Re = 2555, where the ratio of the turbulence intensities of the forced and unforced jets is decreased up to 0.45.


2009 ◽  
Vol 10 (6) ◽  
pp. 447-454
Author(s):  
Najah Kechiche ◽  
Ali Abbassi ◽  
Taoufik Filali ◽  
Jacques Jay ◽  
Habib Ben Aissia

Author(s):  
Lilas Deville ◽  
Mihai Arghir

Brush seals are a mature technology that has generated extensive experimental and theoretical work. Theoretical models range from simple correlations with experimental results to advanced numerical approaches coupling the bristles deformation with the flow in the brush. The present work follows this latter path. The bristles of the brush are deformed by the pressure applied by the flow, by the interference with the rotor and with the back plate. The bristles are modeled as linear beams but a nonlinear numerical algorithm deals with the interferences. The brush with its deformed bristles is then considered as an anisotropic porous medium for the leakage flow. Taking into account, the variation of the permeability with the local geometric and flow conditions represents the originality of the present work. The permeability following the principal directions of the bristles is estimated from computational fluid dynamics (CFD) calculations. A representative number of bristles are selected for each principal direction and the CFD analysis domain is delimited by periodicity and symmetry boundary conditions. The parameters of the CFD analysis are the local Reynolds number and the local porosity estimated from the distance between the bristles. The variations of the permeability are thus deduced for each principal direction and for Reynolds numbers and porosities characteristic for brush seal. The leakage flow rates predicted by the present approach are compared with experimental results from the literature. The results depict also the variations of the pressures, of the local Reynolds number, of the permeability, and of the porosity through the entire brush seal.


Author(s):  
Olanrewaju Miracle Oyewola ◽  
Adebunmi Okediji ◽  
Olusegun Olufemi Ajide ◽  
Muyiwa Samuel Adaramola

In this study, the Reynolds number effect on the development of round jet flow is presented. The jet is produced from a smoothly contracting round nozzle and the flow structure is controlled by varying the air blower speed in order to obtain various Reynolds numbers (Re). The flow Reynolds number considered varies between 1140 and 9117. Mean velocity measurements were taken using hot-wire probe at different axial and lateral distances (0≤x/d≤50, where x is the downstream distance and d is the nozzle diameter) for the jet flow and at for 0≤x/d≤30 in long pipe attached to the nozzle. Measurements reveal that Reynolds number dictate the potential core length such that the higher the Reynolds number, the lower the potential core which is a measure of mixing of jet and ambient fluid. It shows that further away from the jet exit section, potential core decreases as Reynolds number increases, the velocity profile has a top hat shape very close to the nozzle exit and the shape is independent of Reynolds number. It is found that potential core extends up to x/d=8 for Reynolds number of 1140 as against conventional near field 0≤x/d≤6. This may suggest effect of very low Reynolds number. However, further investigation is required to ascertain this at extremely low Reynolds numbers. It is also observed that further away from the jet exit section, the higher the downstream distance, the higher the jet half-width (R1/2). Furthermore, the flow in the pipe shows almost constant value of normalised axial centerline velocity for a longer distance and this clearly indicates that there is mass redistribution rather than entrainment of ambient fluid. Overall, the Reynolds number controls the magnitude rather than the wavelength of the oscillation


2001 ◽  
Vol 439 ◽  
pp. 403-412 ◽  
Author(s):  
RAMA GOVINDARAJAN ◽  
R. NARASIMHA

We first demonstrate that, if the contributions of higher-order mean flow are ignored, the parabolized stability equations (Bertolotti et al. 1992) and the ‘full’ non-parallel equation of Govindarajan & Narasimha (1995, hereafter GN95) are both equivalent to order R−1 in the local Reynolds number R to Gaster's (1974) equation for the stability of spatially developing boundary layers. It is therefore of some concern that a detailed comparison between Gaster (1974) and GN95 reveals a small difference in the computed amplitude ratios. Although this difference is not significant in practical terms in Blasius flow, it is traced here to the approximation, in Gaster's method, of neglecting the change in eigenfunction shape due to flow non-parallelism. This approximation is not justified in the critical and the wall layers, where the neglected term is respectively O(R−2/3) and O(R−1) compared to the largest term. The excellent agreement of GN95 with exact numerical simulations, on the other hand, suggests that the effect of change in eigenfunction is accurately taken into account in that paper.


Author(s):  
C. J. Fang ◽  
M. C. Wu ◽  
C. H. Peng ◽  
Y. C. Lee ◽  
Y. H. Hung

An effective method for performing the thermal optimization of stationary and rotating MCM disks with an unconfined round-jet impingement under space limitation constraint has been successfully developed. The design variables of stationary and rotating MCM disks with an unconfined round-jet impingement include: the ratio of jet separation distance to nozzle diameter (H/d), steady-state Grashof number (Grs), jet Reynolds number (Rej), rotational Reynolds number (Rer). The total experimental cases for stationary and rotating MCM disks are statistically designed by the Central Composite Design (CCD) method. In addition, a sensitivity analysis, the so-called ANOVA, for the design factors has been performed. In the stationary MCM disk with an unconfined round-jet impingement, the contribution percentage of jet Reynolds number on the thermal performance is 95.86%. The effect of jet Reynolds numbers on chip temperature distribution is more significant than that of the H/d ratio and steady-state Grashof number. In rotating MCM disk with an unconfined round-jet impingement, the effect of jet Reynolds number, which has the contribution percentage of 91.81%, dominates the thermal performance. Furthermore, the comparisons between the predictions by using the quadratic Response Surface Methodology (RSM) and the experimental data are made. The maximum deviations for transient stagnation Nusselt number and transient average Nusselt number for the cases of stationary MCM disk are 10.05% and 11.82%, respectively; and 9.41% and 12.44% for the cases of rotating MCM disk, respectively. Finally, with the Sequential Quadratic Programming (SQP) technique, a series of thermal optimal designs under space limitation constraint H/d≤12 has been efficiently performed. Comparisons between the numerical optimization results and the experimental data are made with a satisfactory agreement.


Author(s):  
Georges Halim Atallah ◽  
Emmanuel Belut ◽  
Sullivan Lechêne ◽  
Benoît Trouette ◽  
Stéphane Vincent

Sign in / Sign up

Export Citation Format

Share Document