Intelligent Control Using Artificial Neural Networks and Fuzzy Logic: Recent Trends and Industrial Applications

Author(s):  
A. Zilouchian ◽  
F. Hamono ◽  
T. Jordanides
2008 ◽  
Vol 17 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Abdoul-Fatah Kanta ◽  
Ghislain Montavon ◽  
Michel Vardelle ◽  
Marie-Pierre Planche ◽  
Christopher C. Berndt ◽  
...  

2021 ◽  
pp. 14-22
Author(s):  
G. N. KAMYSHOVA ◽  

The purpose of the study is to develop new scientific approaches to improve the efficiency of irrigation machines. Modern digital technologies allow the collection of data, their analysis and operational management of equipment and technological processes, often in real time. All this allows, on the one hand, applying new approaches to modeling technical systems and processes (the so-called “data-driven models”), on the other hand, it requires the development of fundamentally new models, which will be based on the methods of artificial intelligence (artificial neural networks, fuzzy logic, machine learning algorithms and etc.).The analysis of the tracks and the actual speeds of the irrigation machines in real time showed their significant deviations in the range from the specified speed, which leads to a deterioration in the irrigation parameters. We have developed an irrigation machine’s control model based on predictive control approaches and the theory of artificial neural networks. Application of the model makes it possible to implement control algorithms with predicting the response of the irrigation machine to the control signal. A diagram of an algorithm for constructing predictive control, a structure of a neuroregulator and tools for its synthesis using modern software are proposed. The versatility of the model makes it possible to use it both to improve the efficiency of management of existing irrigation machines and to develop new ones with integrated intelligent control systems.


2014 ◽  
pp. 8-20
Author(s):  
Kurosh Madani

In a large number of real world dilemmas and related applications the modeling of complex behavior is the central point. Over the past decades, new approaches based on Artificial Neural Networks (ANN) have been proposed to solve problems related to optimization, modeling, decision making, classification, data mining or nonlinear functions (behavior) approximation. Inspired from biological nervous systems and brain structure, Artificial Neural Networks could be seen as information processing systems, which allow elaboration of many original techniques covering a large field of applications. Among their most appealing properties, one can quote their learning and generalization capabilities. The main goal of this paper is to present, through some of main ANN models and based techniques, their real application capability in real world industrial dilemmas. Several examples through industrial and real world applications have been presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document