Native and Light Induced Defect States in Wide Band Gap Hydrogenated Amorphous Silicon-Carbon(a-Si1-X Cx :H) Alloy Thin Films

1997 ◽  
pp. 285-299
Author(s):  
Mehmet Güneş
1991 ◽  
Vol 219 ◽  
Author(s):  
K. Gaughan ◽  
S. Hershgold ◽  
J. M. Viner ◽  
P. C. Taylor

ABSTRACTThe uses of liquid sources such as tertiarybutylphosphine (TBP) for n-type doping in hydrogenated amorphous silicon (a-Si:H) and ditertiarybutylsilane (DTBS) and n-butylsilane (NBS) for hydrogenated amorphous silicon-carbon alloys (a-SiC:H) are described. A rf glow discharge process is employed to produce the doped a-Si:H and a-SiC:H thin films. Tertiarybutylphosphine (TBP) may ultimately be preferred over phosphine because TBP is less toxic, less pyrophoric and safer to implement. The gross doping properties of a-Si:H doped with TBP are the same as those obtained with phosphine, but there are some differences. N-butylsilane (NBS) and DTBS have been used to produce wide band gap (E04 3 ≈ eV) a-SiC:H.


2001 ◽  
Vol 383 (1-2) ◽  
pp. 101-103 ◽  
Author(s):  
I. Pelant ◽  
P. Fojtík ◽  
K. Luterová ◽  
J. Kočka ◽  
K. Knížek ◽  
...  

1993 ◽  
Vol 297 ◽  
Author(s):  
M.J. Williams ◽  
S.M. Cho ◽  
G. Lucovsky

We have investigated a-Si,N:H alloys as an alternative wide band-gap, photo-active material. The entire alloy range between a-Si:H and a-Si3N4:H can be formed by a remote plasma-enhanced chemical-vapor deposition (PECVD) process. Other studies have demonstrated that a-Si,N:H alloys could be doped to form window materials for p-i-n devices. This paper focuses on alloy materials with E04 bandgaps to about 2.2 eV. We have prepared these a-Si,N:H alloys, characterized their microstructure, and studied their photoconductivity, sensitivity to light-soaking and transport properties. For example, with increased alloying we show that i) the white-light photoconductivity and ii) the kinetics and magnitude of the decay of photoconducitivity under intense illumination (the Staebler-Wronski effect), are about the same as for PV-grade a-Si:H.


1999 ◽  
Vol 85 (2) ◽  
pp. 812-818 ◽  
Author(s):  
Wataru Futako ◽  
Kunihiko Yoshino ◽  
Charles M. Fortmann ◽  
Isamu Shimizu

2011 ◽  
Vol 11 (1) ◽  
pp. S50-S53 ◽  
Author(s):  
Chao-Chun Wang ◽  
Chueh-Yang Liu ◽  
Shui-Yang Lien ◽  
Ko-Wei Weng ◽  
Jung-Jie Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document