Hydrogenated amorphous silicon‐nitrogen alloys,a‐SiNx:Hy: a wide band gap material for optoelectronic devices

1996 ◽  
Vol 79 (3) ◽  
pp. 1730-1735 ◽  
Author(s):  
F. Demichelis ◽  
G. Crovini ◽  
F. Giorgis ◽  
C. F. Pirri ◽  
E. Tresso
2001 ◽  
Vol 383 (1-2) ◽  
pp. 101-103 ◽  
Author(s):  
I. Pelant ◽  
P. Fojtík ◽  
K. Luterová ◽  
J. Kočka ◽  
K. Knížek ◽  
...  

1993 ◽  
Vol 297 ◽  
Author(s):  
M.J. Williams ◽  
S.M. Cho ◽  
G. Lucovsky

We have investigated a-Si,N:H alloys as an alternative wide band-gap, photo-active material. The entire alloy range between a-Si:H and a-Si3N4:H can be formed by a remote plasma-enhanced chemical-vapor deposition (PECVD) process. Other studies have demonstrated that a-Si,N:H alloys could be doped to form window materials for p-i-n devices. This paper focuses on alloy materials with E04 bandgaps to about 2.2 eV. We have prepared these a-Si,N:H alloys, characterized their microstructure, and studied their photoconductivity, sensitivity to light-soaking and transport properties. For example, with increased alloying we show that i) the white-light photoconductivity and ii) the kinetics and magnitude of the decay of photoconducitivity under intense illumination (the Staebler-Wronski effect), are about the same as for PV-grade a-Si:H.


1991 ◽  
Vol 219 ◽  
Author(s):  
K. Gaughan ◽  
S. Hershgold ◽  
J. M. Viner ◽  
P. C. Taylor

ABSTRACTThe uses of liquid sources such as tertiarybutylphosphine (TBP) for n-type doping in hydrogenated amorphous silicon (a-Si:H) and ditertiarybutylsilane (DTBS) and n-butylsilane (NBS) for hydrogenated amorphous silicon-carbon alloys (a-SiC:H) are described. A rf glow discharge process is employed to produce the doped a-Si:H and a-SiC:H thin films. Tertiarybutylphosphine (TBP) may ultimately be preferred over phosphine because TBP is less toxic, less pyrophoric and safer to implement. The gross doping properties of a-Si:H doped with TBP are the same as those obtained with phosphine, but there are some differences. N-butylsilane (NBS) and DTBS have been used to produce wide band gap (E04 3 ≈ eV) a-SiC:H.


1986 ◽  
Vol 70 ◽  
Author(s):  
Masud Akhtar ◽  
Herbert A. Weaklie

ABSTRACTHydrogenated amorphous silicon may be deposited at relatively low temperatures, where the density of defects may be expected to be low, by the chemical vapor deposition (CVD) of higher silanes. This method is an attractive alternative to plasma deposition techniques. We describe here the preparation of a-Si:H and related alloys incorporating carbon, germanium, and fluorine. a-Si:H films were deposited on heated substrates in the range 365°C-445°C by CVD of Si2H6 and Si3H8. The optical gap (Eg) ranged from 1.4 to 1.7 eV and the properties of films deposited from either Si2 H6 or Si3 H8 were quite similar. Wide band gap (Eg=2 eV) alloys of a-SiC:H doped with boron were prepared by CVD of disilane, methyl silane, and diborane. We also prepared variable band gap a-SiC:H alloys by substituting F2C= CFH for methylsilane, and these films were found to have approximately 1–2% fluorine incorporated. The dark conductivity of the boron doped a-SiC:H alloys dep~sited from either carbon source ranged from ix10-7 to 6x10-7 (ohm-cm)-1. We also prepared low band aap alloys of Si and Ge by CVD of trisilane and germane. The band gap of a film containing 20% Ge was 1.5 eV; however, the photoconductivity of the film was relatively low.


1998 ◽  
Vol 84 (3) ◽  
pp. 1333-1339 ◽  
Author(s):  
Wataru Futako ◽  
Shinya Takeoka ◽  
Charles M. Fortmann ◽  
Isamu Shimizu

Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 402 ◽  
Author(s):  
Chia-Hsun Hsu ◽  
Xiao-Ying Zhang ◽  
Ming Jie Zhao ◽  
Hai-Jun Lin ◽  
Wen-Zhang Zhu ◽  
...  

Boron-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films are deposited using high frequency 27.12 MHz plasma enhanced chemical vapor deposition system as a window layer of silicon heterojunction (SHJ) solar cells. The CH4 gas flow rate is varied to deposit various a-SiC:H films, and the optical and electrical properties are investigated. The experimental results show that at the CH4 flow rate of 40 sccm the a-SiC:H has a high band gap of 2.1 eV and reduced absorption coefficients in the whole wavelength region, but the electrical conductivity deteriorates. The technology computer aided design simulation for SHJ devices reveal the band discontinuity at i/p interface when the a-SiC:H films are used. For fabricated SHJ solar cell performance, the highest conversion efficiency of 22.14%, which is 0.33% abs higher than that of conventional hydrogenated amorphous silicon window layer, can be obtained when the intermediate band gap (2 eV) a-SiC:H window layer is used.


Sign in / Sign up

Export Citation Format

Share Document