Analysis of durable resistance to stem rust in barley

Author(s):  
Brian J. Steffenson
Keyword(s):  

2010 ◽  
Vol 23 (12) ◽  
pp. 1635-1642 ◽  
Author(s):  
Jayaveeramuthu Nirmala ◽  
Tom Drader ◽  
Xianming Chen ◽  
Brian Steffenson ◽  
Andris Kleinhofs

Stem rust threatens cereal production worldwide. Understanding the mechanism by which durable resistance genes, such as Rpg1, function is critical. We show that the RPG1 protein is phosphorylated within 5 min by exposure to spores from avirulent but not virulent races of stem rust. Transgenic mutants encoding an RPG1 protein with an in vitro inactive kinase domain fail to phosphorylate RPG1 in vivo and are susceptible to stem rust, demonstrating that phosphorylation is a prerequisite for disease resistance. Protein kinase inhibitors prevent RPG1 phosphorylation and result in susceptibility to stem rust, providing further evidence for the importance of phosphorylation in disease resistance. We conclude that phosphorylation of the RPG1 protein by the kinase activity of the pK2 domain induced by the interaction with an unknown pathogen spore product is required for resistance to the avirulent stem rust races. The pseudokinase pK1 domain is required for disease resistance but not phosphorylation. The very rapid phosphorylation of RPG1 suggests that an effector is already present in or on the stem rust urediniospores when they are placed on the leaf surface. However, spores must be alive, as determined by their ability to germinate, in order to elicit RPG1 phosphorylation.







Euphytica ◽  
1992 ◽  
Vol 63 (1-2) ◽  
pp. 153-167 ◽  
Author(s):  
Brian J. Steffenson
Keyword(s):  


2019 ◽  
Vol 32 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Rafael Della Coletta ◽  
Candice N. Hirsch ◽  
Matthew N. Rouse ◽  
Aaron Lorenz ◽  
David F. Garvin

The emergence of new races of Puccinia graminis f. sp. tritici, the causal pathogen of wheat stem rust, has spurred interest in developing durable resistance to this disease in wheat. Nonhost resistance holds promise to help control this and other diseases because it is durable against nonadapted pathogens. However, the genetic and molecular basis of nonhost resistance to wheat stem rust is poorly understood. In this study, the model grass Brachypodium distachyon, a nonhost of P. graminis f. sp. tritici, was used to genetically dissect nonhost resistance to wheat stem rust. A recombinant inbred line (RIL) population segregating for response to wheat stem rust was evaluated for resistance. Evaluation of genome-wide cumulative single nucleotide polymorphism allele frequency differences between contrasting pools of resistant and susceptible RILs followed by molecular marker analysis identified six quantitative trait loci (QTL) that cumulatively explained 72.5% of the variation in stem rust resistance. Two of the QTLs explained 31.7% of the variation, and their interaction explained another 4.6%. Thus, nonhost resistance to wheat stem rust in B. distachyon is genetically complex, with both major and minor QTLs acting additively and, in some cases, interacting. These findings will guide future research to identify genes essential to nonhost resistance to wheat stem rust.



2021 ◽  
Vol 10 (1) ◽  
pp. ACCEPTED
Author(s):  
Amir Afzal ◽  
Sayad R. Ali ◽  
Muhammad Ijaz ◽  
Muhammad Saeed

The yield potential of wheat crop is not achieved abundantly because of disease pressure. One of the most destructive of such diseases is stem rust (SR). SR caused by Puccinia graminis f. sp. tritici (Pgt), had been controlled successfully during three decades throughout the world with deployment of semi-dwarf resistant cultivars in the last half of previous century. During 1999 appearance and dispersion of stem rust race Ug-99 in Uganda (a virulent race against Sr31) created an alarming situation worldwide. Widespread germplasm was protected by gene Sr31 found susceptible to this terrible strain as the gene was protecting 80% wheat lines cultivated throughout planet. The emergence of the Ug99 race of stem rust in Africa and the Middle East together with the appearance of new strains in Europe catalyzed a main effort to recognize sources of stem rust resistance genes against new virulent strains and incorporate these genes into wheat lines. Scientific community addressed the dilemma in time and efforts did not go waste. Worldwide concern regarding the danger to global wheat production caused by Ug99 led to breeding wheat for durable resistance against disease and achieved considerably. This success is attributed to team work of experts and serves as an example for research workers in future. However, the continued emergence of stem rust variants that overcome new resistance genes, demands an amplified emphasis on pathogen evolution and virulence mechanisms. A major role for BGRI is to keep ‘the eye on the ball’ with regard to all these aspects. This article enables us to design strategy to tackle a situation which appears without alarm but in this case intellectuals coordinated each other and solution became possible. The same principle does not apply in plant pathology but in Human pathology and Veterinary pathology.



2008 ◽  
Vol 11 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Michael Ayliffe ◽  
Ravi Singh ◽  
Evans Lagudah


Plant Disease ◽  
2021 ◽  
Author(s):  
Yahya Rauf ◽  
Prabin Bajgain ◽  
Matthew Rouse ◽  
Khalil A Khanzada ◽  
Sridhar Bhavani ◽  
...  

Adult plant resistance (APR) to wheat stem rust has been one of the approaches for resistance breeding since the evolution of the Ug99 race group and other races. This study was conducted to dissect and understand the genetic basis of APR to stem rust in spring wheat line ‘Copio’. A total of 176 recombinant inbred lines (RIL) from the cross of susceptible parent ‘Apav’ with Copio were phenotyped for stem rust resistance in six environments. Composite interval mapping (CIM) using 762 Genotyping-by-Sequencing (GBS) markers, identified 16 genomic regions conferring stem rust resistance. Assays with gene-linked molecular markers revealed that Copio carried known APR genes Sr2 and Lr46/Yr29/Sr58 in addition to the 2NS/2AS translocation that harbors race-specific genes Sr38, Lr37 and Yr17. Three QTL were mapped on chromosomes 2B, two QTL on chromosomes 3A, 3B, and 6A each, and one QTL on each of chromosomes 2A, 1B, 2D, 4B, 5D, 6D and 7A. The QTL QSr.umn.5D is potentially a new resistance gene and contributed to quantitative resistance in Copio. The RILs with allelic combinations of Sr2, Sr38, and Sr58 had 27-39% less stem rust coefficient of infection in all field environments compared to RILs with none of these genes and this gene combination was most effective in the US environments. We conclude that Copio carries several genes that provide both race-specific and non-race-specific resistance to diverse races of stem rust fungus and can be used by breeding programs in pyramiding other effective genes to develop durable resistance in wheat.



Plant Disease ◽  
2010 ◽  
Vol 94 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Peter N. Njau ◽  
Yue Jin ◽  
Julio Huerta-Espino ◽  
Beat Keller ◽  
Ravi P. Singh

The race Ug99 of Puccinia graminis f. sp. tritici causing stem rust disease of wheat was initially identified in Uganda in 1998. It was designated as TTKSK based on the North American nomenclature and has caused periodic losses to wheat crops in East Africa. Ug99 has recently moved out of Africa to Yemen and West Asia. The most effective approach to prevent losses from stem rust is through the deployment of resistant cultivars. More effective sources of resistance need to be identified and incorporated in the existing commercial cultivars. The first Stem Rust Resistance Screening Nursery (1stSRRSN) assembled by the International Maize and Wheat Improvement Center (CIMMYT) consisted of elite and advanced CIMMYT bread wheat lines and was evaluated for resistance to Ug99 in Njoro, Kenya for four consecutive seasons (2005 to 2007). Seedling reactions were determined in the greenhouse at the Cereal Disease Laboratory, St. Paul, MN. Two race-specific genes, Sr24 and Sr25, were found to confer resistance to Ug99, although Sr24 became ineffective to a mutant race of Ug99, TTKST, in 2007. Three previously uncharacterized genes, one each from synthetic wheat, Chinese germplasm, and other genetic backgrounds, were detected. Although 30% of the screened lines were susceptible in the seedling stage, these lines displayed various levels of adult plant resistance (APR) in the field tests. Presence of the APR gene Sr2, identified based on the pseudo-black chaff phenotype on glumes and darkened internode, was common in wheat lines with APR. The information on the resistance identified in the 1stSRRSN constitutes an important source for breeding wheat for durable resistance.



Sign in / Sign up

Export Citation Format

Share Document