scholarly journals Role of modelling in improving nutrient efficiency in cropping systems

Author(s):  
P. S. Carberry ◽  
M. E. Probert ◽  
J. P. Dimes ◽  
B. A. Keating ◽  
R. L. McCown
2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


2021 ◽  
pp. 641-668
Author(s):  
Jürgen Köhl ◽  

Bioprotectants have the potential to replace chemical pesticides in agricultural cropping systems and crop protection approaches. Development of new bioprotectants in combination with more restricted use of chemical crop protection will result in their much stronger market position in the future. Bioprotectants fulfil particular roles in current and future crop protection approaches, primarily reducing pesticide residues in harvested products in conventional systems, as well as being the first and preferred control option in integrated pest management programs and organic farming, and complementing resident microbiomes in future resilient cropping systems. The process of developing bioprotectants can take ten to 15 years. This chapter aims to give a brief overview of the role of bioprotectants in current and future crop protection approaches to stimulate discussion within the biocontrol industries, and amongst scientists and funding agencies on the need for new generations of bioprotectants for an agriculture industry undergoing transition.


2014 ◽  
Vol 60 (No. 10) ◽  
pp. 439-445 ◽  
Author(s):  
A. Ashrafi ◽  
M. Zahedi ◽  
K. Fahmi ◽  
R. Nadi

Bioaccumulation of heavy metals can be affected by various crop-weed interactions in agroecosystems. An experiment was conducted to evaluate the role of belowground interaction of soybean and purslane (Portulaca oleracea L.) weed on cadmium (Cd) uptake and its allocation to soybean grains. The experimental treatments included two cropping systems (mono and mixed culture), two salinity levels (0% and 0.5% NaCl) and three levels of Cd in soil (control; 3 and 6 mg Cd/kg). Results showed that the promoting effect of salinity on Cd uptake by soybean and Cd allocation to grains was enhanced in the presence of purslane compared to the absence of neighbour plant. This could be due to increasing Cd-mobilization within the shared rhizosphere of plants. In the non-saline soil decreasing uptake and grain allocation of Cd in co-planted soybean was associated with enhancing of purslane Cd uptake and the depletion of Cd in soil solution. Therefore, it can be concluded that co-planted purslane can alter the uptake of cadmium to the neighboring soybean plants; its effect may be influenced by soil environmental conditions such as salinity.


1992 ◽  
Vol 28 (1) ◽  
pp. 19-29 ◽  
Author(s):  
M. J. Potts ◽  
Greta A. Watson ◽  
R. Sinung-Basuki ◽  
N. Gunadi

SummaryThe radical concept of potato production from true potato seed (TPS) was adopted as a component of their farming system within three seasons by 23 farmers from Cibodas, West Java. The farmers showed an ability to conceptualize and experiment and desired concepts from which they could develop, through research, appropriate principles and field techniques. Information received solely as detailed practices or techniques hindered their progress, since they first needed to repeat the technique in order to understand the concepts and principles involved. Farmer experimentation resembled closely that of experimental station researchers, with the use of replication in space, often neighbouring farmers' plots, and time. Initial experiments covered a wide range of factors but within three seasons farmers had identified similar areas of concern which coincided with those of experiment station researchers worldwide. Farmer experimentation and the role of the researcher in this methodology for technology development are discussed.


Sign in / Sign up

Export Citation Format

Share Document