Double-Parameter Regression Design of Drive Trains for Lightweight Robotic Arms

Author(s):  
Haibin Yin ◽  
Cheng Kong ◽  
Mingchang He ◽  
Shansheng Huang
Author(s):  
Haibin Yin ◽  
Mingchang He ◽  
Shansheng Huang ◽  
Junfeng Li

2017 ◽  
Vol 14 (4) ◽  
pp. 172988141771638 ◽  
Author(s):  
Haibin Yin ◽  
Shansheng Huang ◽  
Mingchang He ◽  
Junfeng Li

This article presents a unified design for lightweight robotic arms based on a unified description of structure and drive trains. In the unified design, the drive trains and structural dimensions are parameterized as design variables, and a major objective minimizes the total mass of robotic arms satisfying the constraint conditions and design criteria. To implement the optimization problem, a mapping relationship between mass and torque of drive trains is introduced as their power–density curves, which enable a unified description of structure and drive trains combining with the dynamics of robotic arms. In this implementation of unified design, there are two modules: structure optimization and drive trains design. The finite element method with nonlinear programming by quadratic Lagrange algorithm is adopted to implement the structure optimization. Moreover, the dynamic analysis in MSC ADAMS is achieved to design the drive trains of robotic arms. This method could uniformly evaluate all components of robotic arms in mass and continuously search the global optimal results. Finally, a design example on this unified design is compared with a referenced design to illustrate the validity and advantage of the proposed scheme.


2020 ◽  
Vol 4 (2) ◽  
pp. 48-55
Author(s):  
A. S. Jamaludin ◽  
M. N. M. Razali ◽  
N. Jasman ◽  
A. N. A. Ghafar ◽  
M. A. Hadi

The gripper is the most important part in an industrial robot. It is related with the environment around the robot. Today, the industrial robot grippers have to be tuned and custom made for each application by engineers, by searching to get the desired repeatability and behaviour. Vacuum suction is one of the grippers in Watch Case Press Production (WCPP) and a mechanism to improve the efficiency of the manufacturing procedure. Pick and place are the important process for the annealing process. Thus, by implementing vacuum suction gripper, the process of pick and place can be improved. The purpose of vacuum gripper other than design vacuum suction mechanism is to compare the effectiveness of vacuum suction gripper with the conventional pick and place gripper. Vacuum suction gripper is a mechanism to transport part and which later sequencing, eliminating and reducing the activities required to complete the process. Throughout this study, the process pick and place became more effective, the impact on the production of annealing process is faster. The vacuum suction gripper can pick all part at the production which will lower the loss of the productivity. In conclusion, vacuum suction gripper reduces the cycle time about 20%. Vacuum suction gripper can help lower the cycle time of a machine and allow more frequent process in order to increase the production flexibility.


Author(s):  
Tran Anh Quynh ◽  
Pham Duy Hien ◽  
Le Quang Du ◽  
Le Hoang Long ◽  
Nguyen Thi Ngoc Tran ◽  
...  

AbstractRobotic surgery offers three-dimensional visualization and precision of movement that could be of great value to gastrointestinal surgeons. There were many previous reports on robotic technology in performing Soave colonic resection and pull-through for Hirschsprung’s disease in children. This study described the follow-up of the Robotic-assisted Soave procedure for Hirschsprung’s disease in children. Robotic-assisted endorectal pull-through was performed using three robotic arms and an additional 5-mm trocar. The ganglionic and aganglionic segments were initially identified by seromuscular biopsies. The rest of the procedure was carried out according to the Soave procedure. We left a short rectal seromuscular sleeve of 1.5–2 cm above the dentate line. From December 2014 to December 2017, 55 pediatric patients were operated on. Age ranged from 6 months to 10 years old (median = 24.5 months). The aganglionic segment was located in the rectum (n = 38), the sigmoid colon (n = 13), and the left colon (n = 4). The mean total operative time was 93.2 ± 35 min (ranging from 80 to 180 min). Minimal blood was lost during the surgery. During the follow-up period, 41 patients (74.6%) had 1–2 defecations per day, 12 patients (21.8%) had 3–4 defecations per day, and 2 patients (3.6%) had more than 4 defecations per day. Fecal incontinence, enterocolitis, and mild soiling occurred in three (5.4%), four (7.3%), and two pediatric patients, respectively. Robotic-assisted Soave procedure for Hirschsprung’s disease in children is a safe and effective technique. However, a skilled robotic surgical team and procedural modifications are needed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Masahiro Inagawa ◽  
Toshinobu Takei ◽  
Etsujiro Imanishi

AbstractMany cooking robots have been developed in response to the increasing demand for such robots. However, most existing robots must be programmed according to specific recipes to enable cooking using robotic arms, which requires considerable time and expertise. Therefore, this paper proposes a method to allow a robot to cook by analyzing recipes available on the internet, without any recipe-specific programming. The proposed method can be used to plan robot motion based on the analysis of the cooking procedure for a recipe. We developed a cooking robot to execute the proposed method and evaluated the effectiveness of this approach by analyzing 50 recipes. More than 25 recipes could be cooked using the proposed approach.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1063 ◽  
Author(s):  
Christoph Datlinger ◽  
Mario Hirz

Rotor shaft position sensors are required to ensure the efficient and reliable control of Permanent Magnet Synchronous Machines (PMSM), which are often applied as traction motors in electrified automotive powertrains. In general, various sensor principles are available, e.g., resolvers and inductive- or magnetoresistive sensors. Each technology is characterized by strengths and weaknesses in terms of measurement accuracy, space demands, disturbing factors and costs, etc. Since the most frequently applied technology, the resolver, shows some weaknesses and is relatively costly, alternative technologies have been introduced during the past years. This paper investigates state-of-the-art position sensor technologies and compares their potentials for use in PMSM in automotive powertrain systems. The corresponding evaluation criteria are defined according to the typical requirements of automotive electric powertrains, and include the provided sensor accuracy under the influence of mechanical tolerances and deviations, integration size, and different electrical- and signal processing-related parameters. The study presents a mapping of the potentials of different rotor position sensor technologies with the target to support the selection of suitable sensor technologies for specified powertrain control applications, addressing both system design and components development.


Author(s):  
Dan Zhang ◽  
Bin Wei

In this paper, a hybrid controller for robotic arms is proposed and designed by combining a proportional-integral-derivative controller (PID) and a model reference adaptive controller (MRAC) in order to further improve the accuracy and joint convergence speed performance. The convergence performance of the PID controller, the model reference adaptive controller and the PID+MRAC hybrid controller for 1-DOF and 2-DOF manipulators are compared. The comparison results show that the convergence speed and its performance for the MRAC and the PID+MRAC controllers are better than that of the PID controller, and the convergence performance for the hybrid control is better than that of the MRAC control.


Sign in / Sign up

Export Citation Format

Share Document