scholarly journals Mechanics of Axially Moving Structures at Mixed Eulerian-Lagrangian Description

Author(s):  
Yury Vetyukov
Author(s):  
Gabriella Nehemy ◽  
Paulo Gonçalves ◽  
EDSON CAPELLO SOUSA

2019 ◽  
Vol 13 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Fang Guo ◽  
Fei Luo ◽  
Yu Liu ◽  
Yilin Wu

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Himanshu Raj

Abstract We study the stress tensor multiplet four-point function in the 6d maximally supersymmetric (2, 0) AN−1 and DN theories, which have no Lagrangian description, but in the large N limit are holographically dual to weakly coupled M-theory on AdS7× S4 and AdS7× S4/ℤ2, respectively. We use the analytic bootstrap to compute the 1-loop correction to this holographic correlator coming from Witten diagrams with supergravity R and the first higher derivative correction R4 vertices, which is the first 1-loop correction computed for a non-Lagrangian theory. We then take the flat space limit and find precise agreement with the corresponding terms in the 11d M-theory S-matrix, some of which we compute for the first time using two-particle unitarity cuts.


2021 ◽  
pp. 107754632199760
Author(s):  
Hossein Abolhassanpour ◽  
Faramarz Ashenai Ghasemi ◽  
Majid Shahgholi ◽  
Arash Mohamadi

This article deals with the analysis of free vibration of an axially moving truncated conical shell. Based on the classical linear theory of elasticity, Donnell shell theory assumptions, Hamilton principle, and Galerkin method, the motion equations of axially moving truncated conical shells are derived. Then, the perturbation method is used to obtain the natural frequency of the system. One of the most important and controversial results in studies of axially moving structures is the velocity detection of critical points. Therefore, the effect of velocity on the creation of divergence instability is investigated. The other important goal in this study is to investigate the effect of the cone angle. As a novelty, our study found that increasing or decreasing the cone angle also affects the critical velocity of the structure in addition to changing the natural frequency, meaning that with increasing the cone angle, the instability occurs at a lower velocity. Also, the effect of other parameters such as aspect ratio and mechanical properties on the frequency and instability points is investigated.


Author(s):  
Abdelraheem M. Aly

Purpose This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method to simulate MHD double-diffusive natural convection in a cavity containing an oscillating pipe and filled with nanofluid. Design/methodology/approach The Lagrangian description of the governing partial differential equations are solved numerically using improved ISPH method. The inner oscillating pipe is divided into two different pipes as an open and a closed pipe. The sidewalls of the cavity are cooled with a lower concentration C_c and the horizontal walls are adiabatic. The inner pipe is heated with higher concentration C_h. The analysis has been conducted for the two different cases of inner oscillating pipes under the effects of wide range of governing parameters. Findings It is found that a suitable oscillating pipe makes a well convective transport inside a cavity. Presence of the oscillating pipe has effects on the heat and mass transfer and fluid intensity inside a cavity. Hartman parameter suppresses the velocity and weakens the maximum values of the stream function. An increase on Hartman, Lewis and solid volume fraction parameters leads to an increase on average Nusselt number on an oscillating pipe and left cavity wall. Average Sherwood number on an oscillating pipe and left cavity wall decreases as Hartman parameter increases. Originality/value The main objective of this work is to study the MHD double-diffusive natural convection of a nanofluid in a square cavity containing an oscillating pipe using improved ISPH method.


Author(s):  
Kenny W. Q. Low ◽  
Chun Hean Lee ◽  
Antonio J. Gil ◽  
Jibran Haider ◽  
Javier Bonet

AbstractThis paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case, the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the non-physical clumping mechanism is completely removed. To fulfil conservation of the global angular momentum, a posteriori (least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly examined. Through these tests, the SPH methodology overcomes by construction a number of persistent numerical drawbacks (e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature, without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm yields equal second order of convergence for both velocities and pressure.


Sign in / Sign up

Export Citation Format

Share Document