scholarly journals 6d (2, 0) and M-theory at 1-loop

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Himanshu Raj

Abstract We study the stress tensor multiplet four-point function in the 6d maximally supersymmetric (2, 0) AN−1 and DN theories, which have no Lagrangian description, but in the large N limit are holographically dual to weakly coupled M-theory on AdS7× S4 and AdS7× S4/ℤ2, respectively. We use the analytic bootstrap to compute the 1-loop correction to this holographic correlator coming from Witten diagrams with supergravity R and the first higher derivative correction R4 vertices, which is the first 1-loop correction computed for a non-Lagrangian theory. We then take the flat space limit and find precise agreement with the corresponding terms in the 11d M-theory S-matrix, some of which we compute for the first time using two-particle unitarity cuts.

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
David Meltzer ◽  
Allic Sivaramakrishnan

Abstract We derive the Cutkosky rules for conformal field theories (CFTs) at weak and strong coupling. These rules give a simple, diagrammatic method to compute the double-commutator that appears in the Lorentzian inversion formula. We first revisit weakly-coupled CFTs in flat space, where the cuts are performed on Feynman diagrams. We then generalize these rules to strongly-coupled holographic CFTs, where the cuts are performed on the Witten diagrams of the dual theory. In both cases, Cutkosky rules factorize loop diagrams into on-shell sub-diagrams and generalize the standard S-matrix cutting rules. These rules are naturally formulated and derived in Lorentzian momentum space, where the double-commutator is manifestly related to the CFT optical theorem. Finally, we study the AdS cutting rules in explicit examples at tree level and one loop. In these examples, we confirm that the rules are consistent with the OPE limit and that we recover the S-matrix optical theorem in the flat space limit. The AdS cutting rules and the CFT dispersion formula together form a holographic unitarity method to reconstruct Witten diagrams from their cuts.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Tobias Hansen

Abstract We study the stress tensor four-point function for $$ \mathcal{N} $$ N = 4 SYM with gauge group G = SU(N), SO(2N + 1), SO(2N) or USp(2N) at large N . When G = SU(N), the theory is dual to type IIB string theory on AdS5× S5 with complexified string coupling τs, while for the other cases it is dual to the orbifold theory on AdS5× S5/ℤ2. In all cases we use the analytic bootstrap and constraints from localization to compute 1-loop and higher derivative tree level corrections to the leading supergravity approximation of the correlator. We give perturbative evidence that the localization constraint in the large N and finite complexified coupling τ limit can be written for each G in terms of Eisenstein series that are modular invariant in terms of τs ∝ τ, which allows us to fix protected terms in the correlator in that limit. In all cases, we find that the flat space limit of the correlator precisely matches the type IIB S-matrix. We also find a closed form expression for the SU(N) 1-loop Mellin amplitude with supergravity vertices. Finally, we compare our analytic predictions at large N and finite τ to bounds from the numerical bootstrap in the large N regime, and find that they are not saturated for any G and any τ , which suggests that no physical theory saturates these bootstrap bounds.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Congkao Wen ◽  
Shun-Qing Zhang

Abstract We present a compact formula in Mellin space for the four-point tree-level holographic correlators of chiral primary operators of arbitrary conformal weights in (2, 0) supergravity on AdS3× S3, with two operators in tensor multiplet and the other two in gravity multiplet. This is achieved by solving the recursion relation arising from a hidden six-dimensional conformal symmetry. We note the compact expression is obtained after carefully analysing the analytic structures of the correlators. Various limits of the correlators are studied, including the maximally R-symmetry violating limit and flat-space limit.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shota Komatsu ◽  
Miguel F. Paulos ◽  
Balt C. van Rees ◽  
Xiang Zhao

Abstract Quantum field theories in AdS generate conformal correlation functions on the boundary, and in the limit where AdS is nearly flat one should be able to extract an S-matrix from such correlators. We discuss a particularly simple position-space procedure to do so. It features a direct map from boundary positions to (on-shell) momenta and thereby relates cross ratios to Mandelstam invariants. This recipe succeeds in several examples, includes the momentum-conserving delta functions, and can be shown to imply the two proposals in [1] based on Mellin space and on the OPE data. Interestingly the procedure does not always work: the Landau singularities of a Feynman diagram are shown to be part of larger regions, to be called ‘bad regions’, where the flat-space limit of the Witten diagram diverges. To capture these divergences we introduce the notion of Landau diagrams in AdS. As in flat space, these describe on-shell particles propagating over large distances in a complexified space, with a form of momentum conservation holding at each bulk vertex. As an application we recover the anomalous threshold of the four-point triangle diagram at the boundary of a bad region.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large-N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2, ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N2− 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R4 and D4R4 contact inter-actions, which, for the R4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2, ℤ) invariant.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
António Antunes ◽  
Miguel S. Costa ◽  
João Penedones ◽  
Aaditya Salgarkar ◽  
Balt C. van Rees

Abstract The boundary correlation functions for a Quantum Field Theory (QFT) in an Anti-de Sitter (AdS) background can stay conformally covariant even if the bulk theory undergoes a renormalization group (RG) flow. Studying such correlation functions with the numerical conformal bootstrap leads to non-perturbative constraints that must hold along the entire flow. In this paper we carry out this analysis for the sine-Gordon RG flows in AdS2, which start with a free (compact) scalar in the UV and end with well-known massive integrable theories that saturate many S-matrix bootstrap bounds. We numerically analyze the correlation functions of both breathers and kinks and provide a detailed comparison with perturbation theory near the UV fixed point. Our bounds are often saturated to one or two orders in perturbation theory, as well as in the flat-space limit, but not necessarily in between.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Simon Caron-Huot ◽  
Dalimil Mazáč ◽  
Leonardo Rastelli ◽  
David Simmons-Duffin

Abstract We reconsider the problem of bounding higher derivative couplings in consistent weakly coupled gravitational theories, starting from general assumptions about analyticity and Regge growth of the S-matrix. Higher derivative couplings are expected to be of order one in the units of the UV cutoff. Our approach justifies this expectation and allows to prove precise bounds on the order one coefficients. Our main tool are dispersive sum rules for the S-matrix. We overcome the difficulties presented by the graviton pole by measuring couplings at small impact parameter, rather than in the forward limit. We illustrate the method in theories containing a massless scalar coupled to gravity, and in theories with maximal supersymmetry.


2018 ◽  
Author(s):  
Nicolò Bontempi ◽  
Irene Vassalini ◽  
Stefano Danesi ◽  
Matteo Ferroni ◽  
Paolo Colombi ◽  
...  

<p>Here we investigate for the first time the opto-thermal behavior of SiO<sub>2</sub>/Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (lambda=532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that in the case of strong opto-thermal coupling the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.</p>


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Luis F. Alday ◽  
Xinan Zhou

Abstract We demonstrate the simplicity of AdS5× S5 IIB supergravity at one loop level, by studying non-planar holographic four-point correlators in Mellin space. We develop a systematic algorithm for constructing one-loop Mellin amplitudes from the tree-level data, and obtain a simple closed form answer for the $$ \left\langle {\mathcal{O}}_2^{SG}{\mathcal{O}}_2^{SG}{\mathcal{O}}_p^{SG}{\mathcal{O}}_p^{SG}\right\rangle $$ O 2 SG O 2 SG O p SG O p SG correlators. The structure of this expression is remarkably simple, containing only simultaneous poles in the Mellin variables. We also study the flat space limit of the Mellin amplitudes, which reproduces precisely the IIB supergravity one-loop amplitude in ten dimensions. Our results provide nontrivial evidence for the persistence of the hidden conformal symmetry at one loop.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Damon J. Binder ◽  
Shai M. Chester ◽  
Max Jerdee ◽  
Silviu S. Pufu

Abstract We study the space of 3d $$ \mathcal{N} $$ N = 6 SCFTs by combining numerical bootstrap techniques with exact results derived using supersymmetric localization. First we derive the superconformal block decomposition of the four-point function of the stress tensor multiplet superconformal primary. We then use supersymmetric localization results for the $$ \mathcal{N} $$ N = 6 U(N)k × U(N + M)−k Chern-Simons-matter theories to determine two protected OPE coefficients for many values of N, M, k. These two exact inputs are combined with the numerical bootstrap to compute precise rigorous islands for a wide range of N, k at M = 0, so that we can non-perturbatively interpolate between SCFTs with M-theory duals at small k and string theory duals at large k. We also present evidence that the localization results for the U(1)2M × U (1 + M)−2M theory, which has a vector-like large-M limit dual to higher spin theory, saturates the bootstrap bounds for certain protected CFT data. The extremal functional allows us to then conjecturally reconstruct low-lying CFT data for this theory.


Sign in / Sign up

Export Citation Format

Share Document