A Diamond-Shaped Fractal Bow-Tie Antenna for THz Applications

Author(s):  
Malay Ranjan Tripathy ◽  
Vipin Choudhary ◽  
Aastha Gupta ◽  
Priya Ranjan ◽  
Daniel Ronnow
Keyword(s):  
Author(s):  
Paul Sangare ◽  
Guillaume Ducournau ◽  
Bertrand Grimbert ◽  
Marc Faucher ◽  
Christophe Gaquiere
Keyword(s):  

2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


2016 ◽  
Vol 5 (6) ◽  
pp. 158-162
Author(s):  
Kazuma Endo ◽  
Takayuki Sasamori ◽  
Teruo Tobana ◽  
Yoji Isota

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Chang Lu ◽  
Qingjian Lu ◽  
Min Gao ◽  
Yuan Lin

The reversible and multi-stimuli responsive insulator-metal transition of VO2, which enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention for its potential applications in versatile active THz devices. Moreover, the investigation into the growth mechanism of VO2 films has led to improved film processing, more capable modulation and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key components exhibit remarkable response to external stimuli, which is not only applicable in THz modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2 component can be controlled through thermal, electrical or optical methods. Recent research has paid special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled by an intense femtosecond laser (fs laser) which supports “quasi-simultaneous” IMT within 1 ps. This progress report reviews the current state of the field, focusing on the material nature that gives rise to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently, active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed, highlighting that VO2 can provide active modulation for a wide variety of applications. Finally, the common characteristics and future development directions of VO2-based tuneable THz devices are discussed.


Sign in / Sign up

Export Citation Format

Share Document