Joint Algorithm for Pump Displacement Measurement Based on Frequency Domain Integral of Vibration Signal

Author(s):  
Qianbing Wu ◽  
Changyi Xie ◽  
Shiwei Ren ◽  
Weijiang Wang ◽  
Zhe Guo
2011 ◽  
Vol 121-126 ◽  
pp. 2372-2376
Author(s):  
Dan Dan Wang ◽  
Yu Zhou ◽  
Qing Wei Ye ◽  
Xiao Dong Wang

The mode peaks in frequency domain of vibration signal are strongly interfered by strong noise, causing the inaccuracy mode parameters. According to this situation, this paper comes up with the thought of mode-peak segmentation based on the spectral clustering algorithm. First, according to the concept of wave packet, the amplitude-frequency of vibration signal is divided into wave packets. Taking each wave packet as a sample of clustering algorithm, the spectral clustering algorithm is used to classify these wave packets. The amplitude-frequency curve of a mode peak becomes a big wave packet in macroscopic. The experiment to simulation signals indicates that this spectral clustering algorithm could accord with the macroscopic observation of mode segmentation effectively, and has outstanding performance especially in strong noise.


2011 ◽  
Vol 143-144 ◽  
pp. 613-617
Author(s):  
Shuang Xi Jing ◽  
Yong Chang ◽  
Jun Fa Leng

Harmonic wavelet function, with the strict box-shaped characteristic of spectrum, has strong ability of identifying signal in frequency domain, and can extract weak components form vibration signals in frequency domain. Using harmonic wavelet analysis method, the selected frequency region and other frequency components of vibration signal of mine ventilator were decomposed into independent frequency bands without any over-lapping or leaking. Simulation and diagnosis example show that this method has good fault diagnosis effect, and the ventilator fault is diagnosed successfully.


2014 ◽  
Vol 936 ◽  
pp. 2243-2246 ◽  
Author(s):  
Zhu Ting Yao ◽  
Hong Xia Pan

Engine is as a power machine, the operating status is good or bad, directly affects the working status of equipment. The status monitoring and fault diagnosis is very necessary to ensure that the equipment runs in its best, and improves equipment maintenance quality and efficiency. The engine failure shows the complexity and diversity of the interaction and complex relationship between the various subsystems of the engine, that is the fault of complexity, ambiguity, correlation, relativity and multiple faults coexistence. The available information are much in the engine diagnosis, for example, the vibration signal from bearings, cylinder head or cylinder block surface; oil, cooling water, pressure of intake, exhaust and fuel; temperature signal; noise, speed or oil-sample signals. In this paper, an engine as an example, engine fault diagnosis experimental system is built, the normal state, left one and right six cylinders off the oil, air filter blockage (inlet wood blockage is 30%, the inlet has screen cloth.) in the load of 2565Nm, and the speeds of 1500r/min, 1800r/min, 2200r/min are studied. The experimental results analysis, feature extraction and fault diagnosis are finished based on the time domain and frequency domain. Keywords: engine, fault diagnosis, time domain, frequency domain.


2012 ◽  
Vol 490-495 ◽  
pp. 1903-1907
Author(s):  
Qi Lin ◽  
Shui Liang Yu

Shaft torsional vibration is critical to rotating machinery as internal combustion engines because it may cause disasters if we ignore its significance. This paper introduced a portable digital system we developed to derive torsional vibration signal by a Hall Effect transducer. By analyzing the signal in frequency domain, we furthered the study on the influence of torsional vibration in each order under various rotation rates to determine the torsional resonant frequency. Moreover, a comparison between several signal processing methods in frequency domain was investigated and an optimum method for the spectrum correction obtained subsequently. Experiments conducted by this portable digital system showed its good performance in shaft torsional vibration measurements, analysis and trouble diagnosis.


2012 ◽  
Vol 442 ◽  
pp. 305-308
Author(s):  
Jian Wei Li ◽  
Ling Wang ◽  
Hong Mei Zhang

It is often needed in engineering that detecting and analyzing vibration signal of some equipment. To meet the requirement, a portable detecting and analytic instrument was designed using virtual instrument concept. In the instrument, notebook computer was used as the platform of hardware. Vibration signal was obtained by integrated piezoelectric acceleration sensor (DTS0104T), and was transferred to a notebook computer through data acquisition card (NI USB-6210) based on USB bus. The software, running on the notebook computer, was developed under LabVIEW. Vibration signal could be displayed on screen, recorded in disk or printed by printer, retrieved, and analyzed. The analysis functions of the instrument include: time-domain analysis, frequency-domain analysis, time-frequency domain analysis, and correlation analysis. The instrument is compact, portable, powerful, and with friendly interfaces, has broad application prospects.


2017 ◽  
Vol 24 (15) ◽  
pp. 3338-3347 ◽  
Author(s):  
Jianhua Cai ◽  
Xiaoqin Li

Gears are the most important transmission modes used in mining machinery, and gear faults can cause serious damage and even accidents. In the work process, vibration signals are influenced not only by friction, nonlinear stiffness, and nonstationary loads, but also by strong noise. It is difficult to separate the useful information from the noise, which brings some trouble to the fault diagnosis of mining machinery gears. The generalized S transform has the advantages of the short time Fourier transform and wavelet transform and is reversible. The time–frequency energy distribution of the gear vibration signal can be accurately presented by the generalized S transform, and a time–frequency filter factor can be constructed to filter the vibration signal in the time–frequency domain. These characteristics play an important role when the generalized S transform is used to remove the noise in the time–frequency domain. In this paper, a new gear fault diagnosis based on the time–frequency domain de-noising is proposed that uses the generalized S transform. The application principle, method steps, and evaluation index of the method are presented, and a wavelet soft-threshold filtering method is implemented for comparison with the proposed approach. The effectiveness of the proposed method is demonstrated by numerical simulation and experimental investigation of a gear with a tooth crack. Our analyses also indicate that the proposed method can be used for fault diagnosis of mining machinery gears.


2015 ◽  
Vol 813-814 ◽  
pp. 1012-1017 ◽  
Author(s):  
M.R. Praveen ◽  
M. Saimurugan

A gear plays a crucial role in the performance of a gear box. The faults in a gear reduces the gear life and if problem arises in shaft it affects bearing. Gear box is finally affected due to these faults. Vibration signals carries information about condition of a gear box which are captured using piezoelectric accelerometer. In this paper, features are extracted and classified using K nearest neighbours (KNN) algorithms for both time and frequency domain. The effectiveness of KNN in classification of gear faults for both time and frequency domain is discussed and compared.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junjun Chen ◽  
Bing Xu ◽  
Xin Zhang

To accurately describe the characteristics of a signal, the feature parameters in time domain and frequency domain are usually extracted for characterization. However, the total number of feature parameters in time domain and frequency domain exceeds twenty, and all of the feature parameters are used for feature extraction, which will result in a large amount of data processing. For the purpose of using fewer feature parameters to accurately reflect the characteristics of the vibration signal, a simple but effective vibration feature extraction method combining time-domain dimensional parameters (TDDP) and Mahalanobis distance (MD) is proposed, i.e., TDDP-MD. In this method, ten time-domain dimensional parameters are selected to extract fault features, and the distance evaluation technique based on Mahalanobis distance criterion function is also introduced to calculate the feature vector, which can be used to classify different failure types. Finally, the proposed method is applied to fault diagnosis of rolling element bearings, and experimental analysis results show that the proposed method can recognize different failure types accurately and effectively with only ten time-domain dimensional parameters and a small quantity of training samples.


Author(s):  
Dongfang Song ◽  
Guanfei Yin

Traditional automatic characteristic extraction technology of engine vibration signals for hybrid electric vehicles (HEV) only focuses on the analysis of engine vibration signals in time domain and frequency domain. Single time domain analysis or single frequency domain analysis cannot accurately analyse the vibration signals, while both time domain analysis and frequency domain analysis have cross-analysis. As a result, the analysis results are repetitive and conflicting, which makes it difficult to extract the characteristics of engine vibration signals. The final extraction accuracy is not high and the extraction efficiency is low. For this reason, an automatic characteristic extraction technology of HEV engine vibration signal based on wavelet packet energy analysis is proposed. Firstly, the mechanical vibration of engine is converted into corresponding voltage and current signals by various sensors and then converted into digital signals by A/D (analog/digital) conditioner. The data of vibration signals are often mixed with various noises, which have a great impact on the final analysis of vibration signals. Data interception and pre-filtering are adopted. Wave, zero-mean, elimination of trend term and elimination of staggered points are used to pre-treat the vibration signals with mixed noise. Short-Time Fourier Transform (STFT) algorithm is introduced to analyse the pre-processed engine vibration signals and the fundamental properties of the non-stationary vibration signals in actual operation of the engine are obtained. The energy distribution of the analysed engine vibration signal is calculated by the wavelet packet energy analysis method. The calculated parameters of the energy distribution of the wavelet packet are taken as the characteristic parameters of the vibration signal. The vibration signal characteristics of the engine are automatically extracted. The experiment is carried out in the form of comparison with the traditional method. The experimental results show that the time-frequency joint analysis applied in the proposed technology can accurately analyse the essential characteristics of the engine vibration signal of HEV. The wavelet packet energy analysis method can ensure the extraction accuracy of the engine vibration signal characteristics.


Sign in / Sign up

Export Citation Format

Share Document