Stimulating Plant Tolerance Against Abiotic Stress Through Seed Priming

2018 ◽  
pp. 147-183 ◽  
Author(s):  
Mona Gergis Dawood
Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2373
Author(s):  
Rubén Alcázar ◽  
Milagros Bueno ◽  
Antonio F. Tiburcio

In recent years, climate change has altered many ecosystems due to a combination of frequent droughts, irregular precipitation, increasingly salinized areas and high temperatures. These environmental changes have also caused a decline in crop yield worldwide. Therefore, there is an urgent need to fully understand the plant responses to abiotic stress and to apply the acquired knowledge to improve stress tolerance in crop plants. The accumulation of polyamines (PAs) in response to many abiotic stresses is one of the most remarkable plant metabolic responses. In this review, we provide an update about the most significant achievements improving plant tolerance to drought, salinity, low and high temperature stresses by exogenous application of PAs or genetic manipulation of endogenous PA levels. We also provide some clues about possible mechanisms underlying PA functions, as well as known cross-talks with other stress signaling pathways. Finally, we discuss about the possible use of PAs for seed priming to induce abiotic stress tolerance in agricultural valuable crop plants.


Author(s):  
V.K. Choudhary ◽  
Subhash Chander ◽  
C.R. Chethan ◽  
Bhumesh Kumar

2020 ◽  
Vol 39 (4) ◽  
pp. 1451-1464 ◽  
Author(s):  
Golam Jalal Ahammed ◽  
Xin Li ◽  
Airong Liu ◽  
Shuangchen Chen

2016 ◽  
Vol 107 (1) ◽  
pp. 113 ◽  
Author(s):  
Maryam ZAHEDIFAR ◽  
Sadegh ZOHRABI

Effect of seed-priming with potassium (K) sources (K-nano-chelate, KNC, and sulfate (0, 2 and 4 %)) under drought stress (DS) conditions (0, -0.3, -0.6, -0.9, -1.2 and -1.5 MPa water potential) on the corn seedling traits was studied. Drought stress decreased the germination indices and seedling vigor. The highest germination, seminal root fresh and dry mass (RFM and RDM) was obtained in KNC primed seeds at -0.3 MPa DS. Mean germination time increased under DS conditions mainly in non-primed seeds. Increasing DS to -1.2 MPa led to decrease in RFM and RDM. Influence of DS on the fresh mass of shoots was more severe than on seminal roots. The highest shoots and seminal roots length was observed in 4 % KNC without any DS. Proper priming can be suggested to increase the plant tolerance under DS.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11707
Author(s):  
Yinchao Zhang ◽  
Peng Liu ◽  
Chen Wang ◽  
Na Zhang ◽  
Yuxiao Zhu ◽  
...  

As one of the major crops, maize (Zea mays L.) is mainly distributed in tropical and temperate regions. However, with the changes of the environments, chilling stress has become a significantly abiotic stress affecting seed germination and thus the reproductive and biomass accumulation of maize. Herein, we investigated five seed germination-related phenotypes among 300 inbred lines under low-temperature condition (10 °C). By combining 43,943 single nucleotide polymorphisms (SNPs), a total of 15 significant (P < 2.03 ×  10-6) SNPs were identified to correlate with seed germination under cold stress based on the FarmCPU model in GWAS, among which three loci were repeatedly associated with multiple traits. Ten gene models were closely linked to these three variations, among which Zm00001d010454, Zm00001d010458, Zm00001d010459, and Zm00001d050021 were further verified by candidate gene association study and expression pattern analysis. Importantly, these candidate genes were previously reported to involve plant tolerance to chilling stress and other abiotic stress. Our findings contribute to the understanding of the genetic and molecular mechanisms underlying chilling germination in maize.


Sign in / Sign up

Export Citation Format

Share Document