Role of Phosphate-Solubilizing Microbes in the Enhancement of Fertilizer Value of Rock Phosphate Through Composting Technology

Author(s):  
P. C. Moharana ◽  
M. D. Meena ◽  
D. R. Biswas
2005 ◽  
Vol 7 (2) ◽  
pp. 41-47
Author(s):  
Aidi Noor

The aims of the experiment were to evaluate the effect of rock phosphate application and combination betweenphosphate-solubilizing bacteria with farm yard manure on nutrient uptake and yield of soybean. Factorial experiment design with two factors was used in randomized complzte block design with three replications. The first factors was level of rockphosphate i.e. : 0; 30; 60; 90 kg P ha· I, and the second factor was combination of phosphate solubili=ing bacteria andfarm yard manure: without phosphate solubi/i=ing bacteria andfarm yard manure; phosphate solubilbing bacteria (Pseudomonas fluorescens); farm yard manure 10 ton ha"I, and phosphate solubilizing bacteria + farm yard manure. The results indicated that rock phosphate and combination of phosphate solubilizing bacteria andfarm yard manure application increased nutrient (N, p, K) uptake and grain yield of soybean. Optimum dosage of rock phosphate in soil without phosphate-solubilizing bacteria andfarm yard manure (control) was 72.15 kg P hdl which gave maximum yield of soybean was 7.73 g pori. While with phosphate-solubilizing bacteria. farm yard manure and phosphate solubilizing bacteria+farm yard manure obtained optimum dosage of rock phosphate were 62.26, 63.94, and 62. 21 kg P hd1 , respectively, which gave maximum yield of soybean were 8.17, 7.95, and 8.43 g pori, respectively.


2011 ◽  
Vol 3 (2) ◽  
pp. 287-290 ◽  
Author(s):  
G . Sibi

Experiments were conducted to evaluate the effect of phosphate solubilizing fungi (Aspergillus awamori and Trichoderma viride) in phosphocompost preparation along with low grade rock phosphate. Co-inoculation of phosphate-solubilizing fungi significantly increased the nutrient value of the compost that explores high P-solubilizing potential of A.awamori and T.viride which can be exploited for the solubilization of fixed phosphates thereby enhancing soil fertility and plant growth. Rock phosphate application along with phosphate solubilizing fungi increased 69.2% acid phosphatase and 65% alkaline phosphatase activity over ordinary compost. With co-inoculation, maximum P content (64.3%) was observed followed by single inoculation with A.awamori (62.2%). The present findings revealed that phosphate solubilizing fungi can interact positively in promoting nutrient content of compost and plant growth leading to improved yield.


Symbiosis ◽  
2016 ◽  
Vol 72 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Liliana Mercedes Ludueña ◽  
María Soledad Anzuay ◽  
Jorge Guillermo Angelini ◽  
Germán Barros ◽  
María Flavia Luna ◽  
...  

2020 ◽  
Vol 1 (2) ◽  
pp. 37-51
Author(s):  
C. E. Oshoma ◽  
S. O. Nwodo ◽  
I. S. Obuekwe

The processing of cassava into value-added products is associated with discharge of effluents which contain substances that have adverse effect on the environment. Remediative activity of indigenous bacteria can be stimulated by supplementing effluents with phosphorus. Rock phosphate (RP) solubilization and enzymatic activities from bacteria on the cassava mill effluents (CME) contaminated soil was investigated. Soil mixed with varying concentrations of CME (0, 100, 200, 300, 400, 500 and 600 ml) and 10 g of RP were analyzed on days 0 and 16. Parameters analyzed were changes in pH, heterotrophic bacteria load, phosphate-solubilizing bacteria load, available phosphorus, acid phosphatase, cellulase and urease concentrations. The results showed that the medium containing 400 ml CME contaminated soil had the highest phosphate-solubilizing bacteria load (12.60 ± 2.08 x 106 cfu/ml), available phosphorus (126.00 ± 4.08 mg/kg), acid phosphatase (9.54 ± 0.51 mgN/g/min), cellulase (15.24 ± 0.81 mg/g/6h) and urease concentration (2.15±0.22 mg/g/2h). The control had the lowest phosphate-solubilizing bacteria load and enzymatic activity. Biostimulation of indigenous bacteria to enhance the degradation of cassava mill effluent-contaminated soil, using rock phosphate, showed promising results. This implies that rock phosphate solubilization by indigenous bacteria in CME-contaminated soils could be important for the remediation and reclamation of contaminated lands.


Author(s):  
Rachna Kapila ◽  
Geeta Verma ◽  
Aparajita Sen ◽  
Arti Nigam

Background: Vermicomposting is the agricultural technique of conversion of organic wastes to a fertile product, which can result in better crop growth and production. However, even though earthworms are the main organisms participating in the process, the microbes associated with it also have an important role to play. These microbes degrade the waste products biochemically and are responsible of the conversion processes. Few studies are carried out on microbial diversity and related enzymes activities in the vermicompost prepared from different organic waste materials. Methods: In this paper, we isolated both bacteria and fungi from seven different types of vermicompost, using different selective media. We also studied the activity of hydrolytic enzymes that are associated with the isolated microbes.Result: It was observed that bacteria like Bacillus sp., Pseudomonas sp., Klebsiella sp., Staphylococcus aureus, Streptococcus, Micrococcus, Actinomycetes, Pigment producing Actinomycetes, Streptomyces, Azotobactor and fungi like Penicillium purpurogenum, Aspergillus sp., Alternaria alternata, Fusarium solani, Rhizopus sp., Mucor hiemalis, Myrothecium verrucaria etc. were present in our vermicompost preparations. The presence of nitrogen fixing bacteria, phosphate solubilizing microorganisms and PGPR indicated the good fertilizer value of the vermicompost samples. It was also observed that the diversity of microbes present supported significant levels of CMCase Exoglucanase, Xylanase, β-Glucosidase, Phosphatase and Urease activities.


2014 ◽  
Vol 20 (2) ◽  
Author(s):  
Ángela Patricia Moreno Quevedo ◽  
Nelson Walter Osorio Vega ◽  
Octavio Augusto González Murillo

2010 ◽  
pp. 273-292 ◽  
Author(s):  
Almas Zaidi ◽  
Munees Ahemad ◽  
Mohammad Oves ◽  
Ees Ahmad ◽  
Mohammad Saghir Khan

Sign in / Sign up

Export Citation Format

Share Document