Social Network Forensics, Cyber Security, and Machine Learning

2019 ◽  
Author(s):  
P. Venkata Krishna ◽  
Sasikumar Gurumoorthy ◽  
Mohammad S. Obaidat
Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


2022 ◽  
Vol 14 (1) ◽  
pp. 0-0

In the domain of cyber security, the defence mechanisms of networks has traditionally been placed in a reactionary role. Cyber security professionals are therefore disadvantaged in a cyber-attack situation due to the fact that it is vital that they maneuver such attacks before the network is totally compromised. In this paper, we utilize the Betweenness Centrality network measure (social property) to discover possible cyber-attack paths and then employ computation of similar personality of nodes/users to generate predictions about possible attacks within the network. Our method proposes a social recommender algorithm called socially-aware recommendation of cyber-attack paths (SARCP), as an attack predictor in the cyber security defence domain. In a social network, SARCP exploits and delivers all possible paths which can result in cyber-attacks. Using a real-world dataset and relevant evaluation metrics, experimental results in the paper show that our proposed method is favorable and effective.


2020 ◽  
Vol 34 (10) ◽  
pp. 13971-13972
Author(s):  
Yang Qi ◽  
Farseev Aleksandr ◽  
Filchenkov Andrey

Nowadays, social networks play a crucial role in human everyday life and no longer purely associated with spare time spending. In fact, instant communication with friends and colleagues has become an essential component of our daily interaction giving a raise of multiple new social network types emergence. By participating in such networks, individuals generate a multitude of data points that describe their activities from different perspectives and, for example, can be further used for applications such as personalized recommendation or user profiling. However, the impact of the different social media networks on machine learning model performance has not been studied comprehensively yet. Particularly, the literature on modeling multi-modal data from multiple social networks is relatively sparse, which had inspired us to take a deeper dive into the topic in this preliminary study. Specifically, in this work, we will study the performance of different machine learning models when being learned on multi-modal data from different social networks. Our initial experimental results reveal that social network choice impacts the performance and the proper selection of data source is crucial.


Sign in / Sign up

Export Citation Format

Share Document