Effect of Nano-Silica and GGBS on the Strength Properties of Fly Ash-Based Geopolymers

Author(s):  
A. Ravitheja ◽  
N. L. N. Kiran Kumar

This experiment highlights the salient features of concrete under nanotechnology. Concrete production requires huge amount of cement and aggregates which eventually increases carbon emission and contaminates environment. Hence, incorporation of ‘F’ class fly ash which is partially replaced for cement, recycled aggregate and cactus gel can be done which can reduce dumping issues, carbon emission and cost. However, incorporation of fly ash in ordinary Portland cement deviates its strength consequently. Hence, Nano-silica can be added as an additive to fill up the deviation, thereby increasing its workability and improving the strengthening factor of concrete. In this paper mineral admixture such as Nano-silica were used to increase the strength of concrete and natural polymer substances such as cactus jelly is used to increase the workability of concrete. For the binding material cement were replaced with the fly-ash at the percentage of 60% respectively and for the coarse aggregate quarry aggregate has been replaced with recycled aggregate with the proportion of 40% and 60% respectively. In the investigation three specimens were casted say conventional, replacement of 60% and replacement of 60% with Nano silica and cactus extract solution. The result of compressive and flexural strength were compared. The aim of this experiment is to maintain the economy and environmental effect.


2019 ◽  
Vol 57 ◽  
pp. 93-104 ◽  
Author(s):  
Usha Sivasankaran ◽  
Seetha Raman ◽  
S. Nallusamy

In the current scenario nanotechnology and nanomaterials are emerging as key role in engineering and medical industries. The objective of this research is to increase the usage of fly ash in concrete to enhance the strength properties of concrete mixed with nano silica and to reduce the emission control caused by CO2discharged from cement manufacturing industries. The strength properties of concrete mixture is enhanced with nano size particles filled the voids amoung micron size cement particle, and hence a denser concrete mixture was being attained. Fly ash is used for partial replacement of cement to enhance the environmental sustainability and to reduce the cost. This research work focussed on preparation of nano silica mixed concrete with replacement of fly ash in concrete mixture. Nano silica was added in addition to the above by 1% and 2% to improve the overall strength properties. Different experimental analysis were carried out to obtained the results such as compression strength, ultimate divide tensile strength and elastic modulus of the enriched concrete mixture. From the observed results it was found that, compression strength was increased by adding 1% nano silica and 25% of fly ash and also increased the ultimate tensile strength by 28%. Scanning Electrom Microscope (SEM) results reveal that, the incorporation of the nano silica in concrete increases the mechanical properties and porosity was successfully minimized with enhancement of pore size distribution.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2750
Author(s):  
Hassan Amer Algaifi ◽  
Abdeliazim Mustafa Mohamed ◽  
Eyad Alsuhaibani ◽  
Shahiron Shahidan ◽  
Fahed Alrshoudi ◽  
...  

Although free-cement-based alkali-activated paste, mortar, and concrete have been recognised as sustainable and environmental-friendly materials, a considerable amount of effort is still being channeled to ascertain the best binary or ternary binders that would satisfy the requirements of strength and durability as well as environmental aspects. In this study, the mechanical properties of alkali-activated mortar (AAM) made with binary binders, involving fly ash (FA) and granulated blast-furnace slag (GBFS) as well as bottle glass waste nano-silica powder (BGWNP), were opti-mised using both experimentally and optimisation modelling through three scenarios. In the first scenario, the addition of BGWNP varied from 5% to 20%, while FA and GBFS were kept constant (30:70). In the second and third scenarios, BGWNP (5–20%) was added as the partial replacement of FA and GBFS, separately. The results show that the combination of binary binders (FA and GBFS) and BGWNP increased AAM’s strength compared to that of the control mixture for all scenarios. In addition, the findings also demonstrated that the replacement of FA by BGWNP was the most significant, while the effect of GBFS replacement by BGWNP was less significant. In particular, the highest improvement in compressive strength was recorded when FA, GBFS, and BGWNP were 61.6%, 30%, and 8.4%, respectively. Furthermore, the results of ANOVA (p values < 0.0001 and high F-values) as well as several statistical validation methods (R > 0.9, RAE < 0.1, RSE < 0.013, and RRSE < 0.116) confirmed that all the models were robust, reliable, and significant. Similarly, the data variation was found to be less than 5%, and the difference between the predicted R2 and adj. R2 was very small (<0.2), thus confirming that the proposed non-linear quadratic equations had the capability to predict for further observation. In conclusion, the use of BGWNP in AAM could act as a beneficial and sustainable strategy, not only to address environmental issues (e.g., landfill) but to also enhance strength properties.


2018 ◽  
Vol 9 (5) ◽  
pp. 616-624 ◽  
Author(s):  
Syahrir Ridha ◽  
Afif Izwan Abd Hamid ◽  
Riau Andriana Setiawan ◽  
Ahmad Radzi Shahari

PurposeThe purpose of this paper is to investigate the resistivity of geopolymer cement with nano-silica additive toward acid exposure for oil well cement application.Design/methodology/approachAn experimental study was conducted to assess the acid resistance of fly ash-based geopolymer cement with nano-silica additive at a concentration of 0 and 1 wt.% to understand its effect on the strength and microstructural development. Geopolymer cement of Class C fly ash and API Class G cement were used. The alkaline activator was prepared by mixing the proportion of sodium hydroxide (NaOH) solutions of 8 M and sodium silicate (Na2SiO3) using ratio of 1:2.5 by weight. After casting, the specimens were subjected to elevated curing condition at 3,500 psi and 130°C for 24 h. Durability of cement samples was assessed by immersing them in 15 wt.% of hydrochloric acid and 15 wt.% sulfuric acid for a period of 14 days. Evaluation of its resistance in terms of compressive strength and microstructural behavior were carried out by using ELE ADR 3000 and SEM, respectively.FindingsThe paper shows that geopolymer cement with 1 wt.% addition of nano-silica were highly resistant to sulfuric and hydrochloric acid. The strength increase was contributed by the densification of the microstructure with the addition of nano-silica.Originality/valueThis paper investigates the mechanical property and microstructure behavior of emerging geopolymer cement due to hydrochloric and sulfuric acids exposure. The results provide potential application of fly ash-based geopolymer cement as oil well cementing.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sarath Chandra K ◽  
Krishnaiah S ◽  
Kibebe Sahile

Industrialization is the key to the growth of any country’s economy. However, on the other hand, the production of industrial waste is increasing enormously, which adversely impacts the environment and natural resources. Red mud is also a widespread industrial waste produced during aluminium extraction from bauxite ore in Bayer’s process. Red mud is a highly alkaline material that creates a massive environmental threat in nature. To reduce the impact of this solid waste material, the ideal method is to use it in construction works with appropriate stabilization. This study envisages the strength properties of red mud with fly ash and cement to use it as a road construction material in the subgrade. The influence of fly ash and cement on improving the strength properties of red mud was studied in detail by replacing red mud with 10%, 20%, and 30% with fly ash and 1%, 3%, and 5% of cement to its dry weight. The CBR (California bearing ratio) value was increased from 1.58% to 11.6% by stabilizing red mud with fly ash and cement, which can be used as a road construction material. The UCS (unconfined compressive strength) of red mud was increased from 825 kPa to 2340 kPa upon curing for 28 days with the right mix of fly ash and cement. Along with the strength properties, the chemical analysis of leachate for the best suitable mix was performed according to the TCLP method to understand the hazardous materials present in the red mud when it is injected as ground material. Both strength properties and the leachate characteristics prove that the red mud with suitable fly ash and cement is an excellent material in road constructions.


Concrete is the most essential construction materials in all over the world. It is necessary to search the cheaply obtainable material as admixture which might be partially replaced cement in the production of concrete. This project is an experimental investigation of the neem leaves ash as partial replacement for cement also fly ash is used for partial replacement of cement. The neem leaves were dried, burnt and heated in the furnace to produce Neem leaves Ash, which was discovered to posses Pozzolanic properties.the ordinary Portland cement was replaced by neem ash by 5%,10%,15%,20% and 25% by weight also flash replaced by 15%,20%,25% and 30% the cubes were crushed to know the comparative strength of the concrete at different curing days. The last result showed that workability and strength properties of the concrete was depended on water cement ratio, total days of curing, the percentage of replacement of Neem leaves ash for OPC . I. This project it was noticed that the result of 5% NLA and 15% fly ash and 10% NLA and 20% of fly ash were gradually increasing the strength at 28 days. Neem leaves play a vital role and behaviour of Neem leaves ash and flash used concrete will be studied


Sign in / Sign up

Export Citation Format

Share Document