Effect of different storage methods on thermal and mechanical properties of mortar containing aerogel, fly ash and nano-silica

2019 ◽  
Vol 199 ◽  
pp. 501-507 ◽  
Author(s):  
Assra Kadum Aziz Al Zaidi ◽  
Bilal Demirel ◽  
Cengiz Duran Atis
2014 ◽  
Vol 37 (2) ◽  
pp. 512-522 ◽  
Author(s):  
Shanmugam Nagendiran ◽  
Adel Badghaish ◽  
Ibnelwaleed A. Hussein ◽  
Abdelrahman Nasr Shuaib ◽  
Sarfaraz Ahmed Furquan ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2919 ◽  
Author(s):  
Giuseppina Roviello ◽  
Laura Ricciotti ◽  
Antonio Jacopo Molino ◽  
Costantino Menna ◽  
Claudio Ferone ◽  
...  

This research investigates the preparation and characterization of new organic–inorganic geopolymeric foams obtained by simultaneously reacting coal fly ash and an alkali silicate solution with polysiloxane oligomers. Foaming was realized in situ using Si0 as a blowing agent. Samples with density ranging from 0.3 to 0.7 g/cm3 that show good mechanical properties (with compressive strength up to ≈5 MPa for a density of 0.7 g/cm3) along with thermal performances (λ = 0.145 ± 0.001 W/m·K for the foamed sample with density 0.330 g/cm3) comparable to commercial lightweight materials used in the field of thermal insulation were prepared. Since these foams were obtained by valorizing waste byproducts, they could be considered as low environmental impact materials and, hence, with promising perspectives towards the circular economy.


2014 ◽  
Vol 51 (5) ◽  
pp. 570-582 ◽  
Author(s):  
Joon Kyu Lee ◽  
Julie Q. Shang

Fly ash is often used as a binder for modifying the properties of geomaterials, such as organic and expansive soils, sludge from water treatment, dredged sediments, mine tailings, etc. Changes in thermal and mechanical properties of compacted mixtures of mine tailings and fly ash are studied over a curing period of 120 h. The study includes the measurement of thermal conductivity, temperature, unconfined compressive strength, and elastic modulus. Effects of the amount of fly ash added to mine tailings, molding water content, and compaction energy on these properties are investigated. Pore-size distribution and surface texture are analyzed to characterize the microstructures of fly ash treated–mine tailings. Relationships between the thermal conductivity and properties that capture packing and mechanical characteristics of mine tailings and fly ash mixtures are established. These observations provide enhanced understanding of thermal, mechanical, and structural properties of fly ash–treated mine tailings, which is associated with the hydration process at the early stage of the mixtures.


2012 ◽  
Vol 204-208 ◽  
pp. 4151-4155
Author(s):  
Zhan Bing Li ◽  
Xiu Wen Wu ◽  
Xiao Chao Chen

Expanded perlite insulation samples were prepared with expanded perlite as aggregate, aluminum dihydrogen phosphate as binder and fly ash as addition by mixing, molding, drying and calcination. The effects of fly ash mass percentage on the compressive strength, thermal conductivity, moisture content and density of the samples were studied. The results indicated that the combination properties of adding 10 % fly ash were the best among the all samples according to the national standards (GB/T10303-2001) No 350 Qualified of expanded perlite insulation products. Its compressive strength, thermal conductivity, moisture content and density were 0.456 Mpa, 0.08165 W/ (m K), 0.02 mass % and 259 kg/m3, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1296
Author(s):  
Peng Zhang ◽  
Dehao Sha ◽  
Qingfu Li ◽  
Shikun Zhao ◽  
Yifeng Ling

In this study, the effect of adding nano-silica (NS) particles on the properties of concrete containing coal fly ash were explored, including the mechanical properties, impact resistance, chloride penetration resistance, and freezing–thawing resistance. The NS particles were added into the concrete at 1%, 2%, 3%, 4%, and 5% of the binder weight. The behavior under an impact load was measured using a drop weight impact method, and the number of blows and impact energy difference was used to assess the impact resistance of the specimens. The durability of the concrete includes its chloride penetration and freezing–thawing resistance; these were calculated based on the chloride diffusion coefficient and relative dynamic elastic modulus (RDEM) of the samples after the freezing–thawing cycles, respectively. The experimental results showed that the addition of NS can considerably improve the mechanical properties of concrete, along with its freezing–thawing resistance and chloride penetration resistance. When NS particles were added at different replacement levels, the compressive, flexural, and splitting tensile strengths of the specimens were increased by 15.5%, 27.3%, and 19%, respectively, as compared with a control concrete. The addition of NS enhanced the impact resistance of the concrete, although the brittleness characteristics of the concrete did not change. When the content of the NS particles was 2%, the number of first crack impacts reached a maximum of 37, 23.3% higher compared with the control concrete. Simultaneously, the chloride penetration resistance and freezing–thawing resistance of the samples increased dramatically. The optimal level of cement replacement by NS in concrete for achieving the best impact resistance and durability was 2–3 wt%. It was found that when the percentage of the NS in the cement paste was excessively high, the improvement from adding NS to the properties of the concrete were reduced, and could even lead to negative impacts on the impact resistance and durability of the concrete.


2019 ◽  
Vol 57 ◽  
pp. 93-104 ◽  
Author(s):  
Usha Sivasankaran ◽  
Seetha Raman ◽  
S. Nallusamy

In the current scenario nanotechnology and nanomaterials are emerging as key role in engineering and medical industries. The objective of this research is to increase the usage of fly ash in concrete to enhance the strength properties of concrete mixed with nano silica and to reduce the emission control caused by CO2discharged from cement manufacturing industries. The strength properties of concrete mixture is enhanced with nano size particles filled the voids amoung micron size cement particle, and hence a denser concrete mixture was being attained. Fly ash is used for partial replacement of cement to enhance the environmental sustainability and to reduce the cost. This research work focussed on preparation of nano silica mixed concrete with replacement of fly ash in concrete mixture. Nano silica was added in addition to the above by 1% and 2% to improve the overall strength properties. Different experimental analysis were carried out to obtained the results such as compression strength, ultimate divide tensile strength and elastic modulus of the enriched concrete mixture. From the observed results it was found that, compression strength was increased by adding 1% nano silica and 25% of fly ash and also increased the ultimate tensile strength by 28%. Scanning Electrom Microscope (SEM) results reveal that, the incorporation of the nano silica in concrete increases the mechanical properties and porosity was successfully minimized with enhancement of pore size distribution.


Sign in / Sign up

Export Citation Format

Share Document