Functions of Cell Death and DNA Damage-Related Signaling Pathways in the Regulation of Toxicity of Environmental Toxicants or Stresses

Author(s):  
Dayong Wang
2021 ◽  
Author(s):  
Emilie Logie ◽  
Louis Maes ◽  
Joris Van Meenen ◽  
Peter HL De Rijk ◽  
Mojca Strazisar ◽  
...  

Ferroptosis is a lipid peroxidation-dependent mechanism of regulated cell death known to suppress tumor proliferation and progression. Although several genetic and protein hallmarks have been identified in ferroptotic cell death, it remains challenging to fully characterize ferroptosis signaling pathways and to find suitable biomarkers. Moreover, changes taking place in the epigenome of ferroptotic cells remain poorly studied. In this context, we aimed to investigate the role of chromatin remodeler forkhead box protein A1 (FOXA1) in RSL3-treated multiple myeloma cells because, similar to ferroptosis, this transcription factor has been associated with changes in the lipid metabolism, DNA damage, and epithelial-to-mesenchymal transition (EMT). RNA sequencing and Western blot analysis revealed that FOXA1 expression is consistently upregulated upon ferroptosis induction in different in vitro and in vivo disease models. In silico motif analysis and transcription factor enrichment analysis further suggested that ferroptosis-mediated FOXA1 expression is orchestrated by specificity protein 1 (Sp1), a transcription factor known to be influenced by lipid peroxidation. Remarkably, FOXA1 upregulation in ferroptotic myeloma cells did not alter hormone signaling or EMT, two key downstream signaling pathways of FOXA1. CUT&RUN genome-wide transcriptional binding site profiling showed that GPX4-inhibition by RSL3 triggered loss of binding of FOXA1 to pericentromeric regions in multiple myeloma cells, suggesting that this transcription factor is possibly involved in genomic instability, DNA damage, or cellular senescence under ferroptotic conditions.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Alakananda Basu ◽  
Soumya Krishnamurthy

Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Singh V ◽  
◽  
Kumar R ◽  
Gautam HK ◽  
◽  
...  

Purpose: In this review, we summarized the latest information related to accidentally and/or un-accidental exposure of ionizing radiation triggered by oxidative stress and/or cytotoxicity and adverse effects on human health such as hematopoietic, gastrointestinal and cerebrovascular injury collectively referred to as acute radiation syndromes. Directly or indirectly IR induced oxidation of biomolecules, especially DNA, resulting in altered genomic stability and DNA strand breaks. DNA strand breaks are recognized by DNA damage sensory protein that activates downstream checkpoint kinases as well as initiate compensatory multiple intracellular and intranuclear signaling pathways, resulting in cell cycle arrest and DNA repair. Simultaneously activates tumor suppressor genes leading to death signaling pathway or triggering of numerous autocrine/paracrine loops leading to structural dis-organization and programmed cell death. These signaling pathways work together to decrease the magnitude of radiotherapy and promote the development of radiation resistance in cancer cells. The fate of the cells and DNA damage repair depending on the severity of radiation exposure and types of DNA damage. Conclusions: Based on the recent invested reports related to IR and DNA damage signaling, this review would be helpful for researchers and healthcare providers to develop a new research concept and translate this information into a cancer therapeutic approach. Moreover, target specific screening and development of radiation countermeasures agent for radiological emergencies.


2019 ◽  
Vol 24 (40) ◽  
pp. 4726-4741 ◽  
Author(s):  
Orathai Tangvarasittichai ◽  
Surapon Tangvarasittichai

Background: Oxidative stress is caused by free radicals or oxidant productions, including lipid peroxidation, protein modification, DNA damage and apoptosis or cell death and results in cellular degeneration and neurodegeneration from damage to macromolecules. Results: Accumulation of the DNA damage (8HOdG) products and the end products of LPO (including aldehyde, diene, triene conjugates and Schiff’s bases) were noted in the research studies. Significantly higher levels of these products in comparison with the controls were observed. Oxidative stress induced changes to ocular cells and tissues. Typical changes include ECM accumulation, cell dysfunction, cell death, advanced senescence, disarrangement or rearrangement of the cytoskeleton and released inflammatory cytokines. It is involved in ocular diseases, including keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, cataract, age-related macular degeneration, primary open-angle glaucoma, retinal light damage, and retinopathy of prematurity. These ocular diseases are the cause of irreversible blindness worldwide. Conclusions: Oxidative stress, inflammation and autophagy are implicated in biochemical and morphological changes in these ocular tissues. The development of therapy is a major target for the management care of these ocular diseases.


PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e31761 ◽  
Author(s):  
Marianna Halasi ◽  
Andrei L. Gartel

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Munetoshi Maeda ◽  
Masanori Tomita ◽  
Mika Maeda ◽  
Hideki Matsumoto ◽  
Noriko Usami ◽  
...  

AbstractWe recently showed that when a low X-ray dose is used, cell death is enhanced in nucleus-irradiated compared with whole-cell-irradiated cells; however, the role of the cytoplasm remains unclear. Here, we show changes in the DNA damage responses with or without X-ray microbeam irradiation of the cytoplasm. Phosphorylated histone H2AX foci, a surrogate marker for DNA double-strand breaks, in V79 and WI-38 cells are not observed in nucleus irradiations at ≤ 2 Gy, whereas they are observed in whole-cell irradiations. Addition of an ataxia telangiectasia mutated (ATM) kinase inhibitor to whole-cell irradiations suppresses foci formation at ≤ 2 Gy. ABL1 and p73 expression is upregulated following nucleus irradiation, suggesting the induction of p73-dependent cell death. Furthermore, CDKN1A (p21) is upregulated following whole-cell irradiation, indicating the induction of cell cycle arrest. These data reveal that cytoplasmic radioresponses modify ATM-mediated DNA damage responses and determine the fate of cells irradiated at low doses.


Sign in / Sign up

Export Citation Format

Share Document