scholarly journals Cellular Responses to Cisplatin-Induced DNA Damage

2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Alakananda Basu ◽  
Soumya Krishnamurthy

Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

2020 ◽  
Author(s):  
Kevin Christian M. Gulay ◽  
Keisuke Aoshima ◽  
Yuki Shibata ◽  
Hironobu Yasui ◽  
Qin Yan ◽  
...  

AbstractEpigenetic regulators have been implicated in tumorigenesis of many types of cancer; however, their roles in endothelial cell cancers such as canine hemangiosarcoma (HSA) have not been studied. In this study, we found that lysine-specific demethylase 2B (Kdm2b) was highly expressed in HSA cell lines compared to normal canine endothelial cells. Silencing of Kdm2b in HSA cells resulted to increased cell death in vitro compared to the scramble control by inducing apoptosis through the inactivation of the DNA repair pathways and accumulation of DNA damage. Similarly, doxycycline-induced Kdm2b silencing in tumor xenografts resulted to decreased tumor sizes compared to the scramble control. Furthermore, Kdm2b was also highly expressed in clinical cases of HSA, and its expression levels was higher than in hemangioma, a benign counterpart of HSA. Based on these results, we hypothesized that pharmacological Kdm2b inhibition can also induce HSA cell death and can be used as an alternative treatment for HSA. We treated HSA cells with GSK-J4, a histone demethylase inhibitor, and found that GSK-J4 treatment also induced apoptosis and cell death. On top of that, GSK-J4 treatment in HSA tumor-bearing mice decreased tumor sizes without any obvious side-effects. In this study, we demonstrated that Kdm2b acts as an oncogene in HSA by enhancing DNA damage response and can be used as a biomarker to differentiate HSA from hemangioma. Moreover, we indicated that histone demethylase inhibitor GSK-J4 can be used as a therapeutic alternative to doxorubicin for HSA treatment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2659-2659
Author(s):  
Shahar Biechonski ◽  
Muhammad Yassin ◽  
Nasma Aqaqe ◽  
Leonid Olender ◽  
Melanie Rall ◽  
...  

Abstract DNA double strand breaks (DSBs) are the most dangerous genomic lesions that can be induced by endogenous and exogenous sources. DNA damage response determines cellular fate decisions following DSBs and can lead to cell death or cell survival. Incorrect DSB repair via canonical Non-Homologous End Joining (cNHEJ) or Alternative NHEJ (Alt-NHEJ) is the main source of oncogenic aberrations, including leukemogenic translocations, DNA sequence deletions and insertions. The long life span of Hematopoietic Stem Cells (HSC) and their practically unlimited potential for self-renewal requires efficient strategies to cope with DNA damage to eliminate erroneous genetic information inheritance to daughter cells. Although the critical importance of maintaining genome integrity for normal hematopoiesis and prevention of leukemogenesis has been established, definitive analysis of DNA damage response and its mutagenic outcomes in human HSC and Progenitors in response to DSBs is missing. Here we repot that human cord blood purified HSC (defined as CD34+CD38-CD45RA-) are exquisitely sensitive to irradiation (IR)-induced apoptosis in contrast to committed progenitors (defined as CD34+CD38+) as validated by PARP cleavage induction. Interestingly, pan-caspase inhibitor Z-VAD-FMK prevented, whereas CHK2 inhibitor (PV1019) failed in altering apoptosis onset of irradiated HSC. Strikingly, CHK2 inhibitor blocked IR-induced apoptosis in cycling HSC, suggesting differential wiring of DNA damage induced apoptosis in quiescent versus mitogenically stimulated HSC. To characterize cNHEJ repair pathway and its mutagenic potential in live primitive hematopoietic cells we analyzed I-SceI endonuclease induced tandem DSBs joining capacity using DNA repair reporter assay. We found that HSC exhibit inferior cNHEJ capacity as compared with committed progenitors. By decreasing DSBs persistence we revealed that progenitors utilize to the higher degree than HSC the mutagenic component of cNHEJ pathway that results in DNA deletions. We identified HSC-specific contribution of CHK2 kinase activity in limiting incorrect DNA ends joining. Blockade of apoptosis induction also led to the selective increase in mutagenic NHEJ in HSC. On the other hand, inhibition of DNA-PK led to increased oncogenic repair in progenitors only. Importantly, we revealed that HSC utilized mutagenic Alt-NHEJ pathway that depends on microhomologies search and extensive DNA ends processing less efficiently than Progenitors. Thus, our results indicate that oncogenic consequences of DSBs repair in HSC are distinctly minimized by the non-redundant cell death and CHK2 dependent mechanisms. More broadly, these findings will help to elucidate additional repair modifiers and the mechanism by which HSC contend with genotoxic stress. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 283 (22) ◽  
pp. 15512
Author(s):  
Navjotsingh Pabla ◽  
Shuang Huang ◽  
Qing-Sheng Mi ◽  
Rene Daniel ◽  
Zheng Dong

2020 ◽  
Vol 114 (4) ◽  
pp. 641-652 ◽  
Author(s):  
Anisha Zaveri ◽  
Ruojun Wang ◽  
Laure Botella ◽  
Ritu Sharma ◽  
Linnan Zhu ◽  
...  

2005 ◽  
Vol 79 (13) ◽  
pp. 8243-8248 ◽  
Author(s):  
Sara Klucking ◽  
Asha S. Collins ◽  
John A. T. Young

ABSTRACT The cytopathic effect (CPE) seen with some subgroups of avian sarcoma and leukosis virus (ASLV) is associated with viral Env activation of the death-promoting activity of TVB (a tumor necrosis factor receptor-related receptor that is most closely related to mammalian TNF-related apoptosis-inducing ligand [TRAIL] receptors) and with viral superinfection leading to unintegrated viral DNA (UVD) accumulation, which is presumed to activate a cellular DNA damage response. In this study, we employed cells that express signaling-deficient ASLV receptors to demonstrate that an ASLV CPE can be uncoupled from the death-promoting functions of the TVB receptor. However, these cell-killing events were associated with much higher levels of viral superinfection and DNA accumulation than those seen when the virus used signaling-competent TVB receptors. These findings suggest that a putative cellular DNA damage response that is activated by UVD accumulation might act in concert with the death-signaling pathways activated by Env-TVB interactions to trigger cell death. Such a model is consistent with the well-established synergy that exists between TRAIL-signaling pathways and DNA damage responses which is currently being exploited in cancer therapy regimens.


2021 ◽  
Author(s):  
Nicolás Romero ◽  
Herman W. Favoreel

The nuclear factor kappa B (NF-κB) pathway is known to integrate signaling associated with very diverse intra- and extracellular stressors including virus infections, and triggers a powerful (pro-inflammatory) response through the expression of NF-κB-regulated genes. Typically, the NF-κB pathway collects and transduces threatening signals at the cell surface or in the cytoplasm leading to nuclear import of activated NF-κB transcription factors. In the current work, we demonstrate that the swine alphaherpesvirus pseudorabies virus (PRV) induces a peculiar mode of NF-κB activation known as “inside-out” NF-κB activation. We show that PRV triggers the DNA damage response (DDR) and that this DDR response drives NF-κB activation since inhibition of the nuclear ataxia telangiectasia-mutated (ATM) kinase, a chief controller of DDR, abolished PRV-induced NF-κB activation. Initiation of the DDR-NF-κB signaling axis requires viral protein synthesis but occurs before active viral genome replication. In addition, the initiation of the DDR-NF-κB signaling axis is followed by a virus-induced complete shutoff of NF-κB-dependent gene expression that depends on viral DNA replication. In summary, the results presented in this study reveal that PRV infection triggers a non-canonical DDR-NF-κB activation signaling axis and that the virus actively inhibits the (potentially antiviral) consequences of this pathway, by inhibiting NF-κB-dependent gene expression. IMPORTANCE: The NF-κB signaling pathway plays a critical role in coordination of innate immune responses that are of vital importance in the control of infections. The current report generates new insights in the interaction of the alphaherpesvirus pseudorabies virus (PRV) with the NF-κB pathway, as they reveal that (i) PRV infection leads to NF-κB activation via a peculiar “inside-out’ nucleus-to-cytoplasm signal that is triggered via the DNA damage response (DDR), (ii) the DDR-NF-κB signaling axis requires expression of viral proteins but is initiated before active PRV replication, and (iii) late viral factor(s) allow PRV to actively and efficiently inhibit NF-κB-dependent (pro-inflammatory) gene expression. These data suggest that activation of the DDR-NF-κB during PRV infection is host-driven and that its potential antiviral consequences are actively inhibited by the virus.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Toshinori Ozaki ◽  
Akira Nakagawara ◽  
Hiroki Nagase

A proper DNA damage response (DDR), which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such asp21WAF1,BAX, andPUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53 is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between p53 and RUNX family in response to DNA damage.


Sign in / Sign up

Export Citation Format

Share Document