Semantic Recognition of Web Structure to Retrieve Relevant Documents from Google by Formulating Index Term

Author(s):  
Jinat Ara ◽  
Hanif Bhuiyan
Keyword(s):  
2012 ◽  
Vol 27 (4) ◽  
pp. 798-805 ◽  
Author(s):  
Collin Hii ◽  
Øyvind W. Gregersen ◽  
Gary Chinga-Carrasco ◽  
Øyvind Eriksen ◽  
Kai Toven

Abstract This study shows that wet-pressing TMP and DIP with a shoe press pulse may yield similar afterpress solids, provided that an adequate shoe pulse length with similar pressure profile is applied. A wet web with more porous structure in the sheet dewatering (felt) layer seems to contribute to the increased dewatering during wet pressing. In addition, a shoe press pulse with high peak pressure at the end yields higher solids content after wet-pressing and higher bulk compared to a pulse with a peak pressure in the beginning. The increased dewatering during wet-pressing implies a reduction of steam consumption in the dryer.


2020 ◽  
Vol 10 (2) ◽  
pp. 15 ◽  
Author(s):  
Mattia Ragnoli ◽  
Gianluca Barile ◽  
Alfiero Leoni ◽  
Giuseppe Ferri ◽  
Vincenzo Stornelli

The development of Internet of Things (IoT) systems is a rapidly evolving scenario, thanks also to newly available low-power wide area network (LPWAN) technologies that are utilized for environmental monitoring purposes and to prevent potentially dangerous situations with smaller and less expensive physical structures. This paper presents the design, implementation and test results of a flood-monitoring system based on LoRa technology, tested in a real-world scenario. The entire system is designed in a modular perspective, in order to have the capability to interface different types of sensors without the need for making significant hardware changes to the proposed node architecture. The information is stored through a device equipped with sensors and a microcontroller, connected to a LoRa wireless module for sending data, which are then processed and stored through a web structure where the alarm function is implemented in case of flooding.


2017 ◽  
Vol 27 (4) ◽  
pp. 1190-1198 ◽  
Author(s):  
Joshua J. Thoresen ◽  
David Towns ◽  
Sebastian Leuzinger ◽  
Mel Durrett ◽  
Christa P. H. Mulder ◽  
...  

2020 ◽  
Vol 106 (2) ◽  
pp. 69-85
Author(s):  
Matthew J. Young ◽  
Frederick Feyrer ◽  
Paul R. Stumpner ◽  
Veronica Larwood ◽  
Oliver Patton ◽  
...  

2009 ◽  
Vol 364 (1524) ◽  
pp. 1789-1801 ◽  
Author(s):  
Kevin Shear McCann ◽  
Neil Rooney

Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.


Nature ◽  
10.1038/47023 ◽  
1999 ◽  
Vol 402 (6757) ◽  
pp. 69-72 ◽  
Author(s):  
Owen L. Petchey ◽  
P. Timon McPhearson ◽  
Timothy M. Casey ◽  
Peter J. Morin

Sign in / Sign up

Export Citation Format

Share Document