Welding Process Optimization Methods: A Review

Author(s):  
Heping Chen ◽  
Biao Zhang ◽  
Thomas Fuhlbrigge
2018 ◽  
Vol 207 ◽  
pp. 04005
Author(s):  
Min Hu

This paper studies WELDOX960 high strength steel, analysis of the welding ability of WELDOX960 high strength steel. Analyze the weld ability of WELDOX960 high-strength steel materials, and study the influence of process parameters such as welding current, welding voltage, and welding speed on penetration depth and weld width in the automated welding process. Through this test, the welding process is optimized to ensure the weld quality. The results show that WELDOX960 high-strength steel adopts multi-layer and multi-pass welding to form better welds.


2020 ◽  
Vol 2020 (4) ◽  
pp. 4119-4123
Author(s):  
Martin Seidl ◽  
Jiri Safka ◽  
Lubos Behalek ◽  
Iva Novakova

2022 ◽  
Author(s):  
Andrea Angulo ◽  
Lankun Yang ◽  
Eray S Aydil ◽  
Miguel A. Modestino

Autonomous chemical process development and optimization methods use algorithms to explore the operating parameter space based on feedback from experimentally determined exit stream compositions. Measuring the compositions of multicomponent streams...


2010 ◽  
Vol 102-104 ◽  
pp. 74-78
Author(s):  
Bin Gao ◽  
Xiu Rong Nan ◽  
Bai Zhong Wu

The suction plastic forming process for in-mold decoration plastic sheet has been the best process for thin-shell plastic exterior decoration parts. But the suction plastic forming products still suffers from the uneven thickness. Based on the general finite element analysis software POLYFLOW for viscoelastic fluid, a set of optimization methods for suction plastic forming process of in-mold decoration plastic sheet is introduced in this paper to reduce the uneven level of thickness. These methods include establishing process optimization scheme, building mesh model, selecting the material constitutive model and determining its parameters, imposing boundary conditions and blowing pressure, and applying the mold movement. Finally, the optimized suction plastic forming process is used to produce the in-mold decoration plastic rear bumper sample of an automobile, and the results show that optimized process is effective and applicable.


Author(s):  
R. Venkata Rao

Weld quality is greatly affected by the operating process parameters in the gas metal arc welding (GMAW) process. The quality of the welded material can be evaluated by many characteristics, such as bead geometric parameters, deposition efficiency, weld strength, weld distortion, et cetera. These characteristics are controlled by a number of welding process parameters, and it is important to set up proper process parameters to attain good quality. Various optimization methods can be applied to define the desired process output parameters through developing mathematical models to specify the relationship between the input parameters and output parameters. The method capable of accurate prediction of welding process output parameters would be valuable for rapid development of welding procedures and for developing control algorithms in automated welding applications. This chapter presents the details of various techniques used for modeling and optimization of GMAW process parameters. The optimization methods covered in this chapter are appropriate for modeling and optimizing the GMAW process. It is found that there is high level of interest in the adaptation of RSM and ANN techniques to predict responses and to optimize the GMAW process. Combining two optimization techniques, such as GA and RSM, would reveal good results for finding out the optimal welding conditions. Furthermore, efforts are required to apply advanced optimization techniques to find out the optimal parameters for GMAW process at which the process could be considered safe and more economical.


2002 ◽  
Vol 14 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Pedro Grima ◽  
Xavier Tort-Martorell ◽  
Bovas Abraham

Sign in / Sign up

Export Citation Format

Share Document