Integrated Voltage Equalizer Enhanced with Quasi-Z-Source Inverter for PV Panel Under Partial Shading

Author(s):  
V. Sivachidambaranathan ◽  
A. Rameshbabu
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3863
Author(s):  
Tiago Alves ◽  
João Paulo N. Torres ◽  
Ricardo A. Marques Lameirinhas ◽  
Carlos A. F. Fernandes

The effect of partial shading in photovoltaic (PV) panels is one of the biggest problems regarding power losses in PV systems. When the irradiance pattern throughout a PV panel is inequal, some cells with the possibility of higher power production will produce less and start to deteriorate. The objective of this research work is to present, test and discuss different techniques to help mitigate partial shading in PV panels, observing and commenting the advantages and disadvantages for different PV technologies under different operating conditions. The motivation is to contribute with research, simulation, and experimental work. Several state-of-the-artsolutions to the problem will be presented: different topologies in the interconnection of the panels; different PV system architectures, and also introducing new solution hypotheses, such as different cell interconnections topologies. Alongside, benefits and limitations will be discussed. To obtain actual results, the simulation work was conducted by creating MATLAB/Simulink models for each different technique tested, all centered around the 1M5P PV cell model. The several techniques tested will also take into account different patterns and sizes of partial shading, different PV panel technologies, different values of source irradiation, and different PV array sizes. The results will be discussed and validated by experimental tests.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Saad Motahhir ◽  
Abdelaziz El Ghzizal ◽  
Souad Sebti ◽  
Aziz Derouich

The first objective of this work is to determine some of the performance parameters characterizing the behavior of a particular photovoltaic (PV) panels that are not normally provided in the manufacturers’ specifications. These provide the basis for developing a simple model for the electrical behavior of the PV panel. Next, using this model, the effects of varying solar irradiation, temperature, series and shunt resistances, and partial shading on the output of the PV panel are presented. In addition, the PV panel model is used to configure a large photovoltaic array. Next, a boost converter for the PV panel is designed. This converter is put between the panel and the load in order to control it by means of a maximum power point tracking (MPPT) controller. The MPPT used is based on incremental conductance (INC), and it is demonstrated here that this technique does not respond accurately when solar irradiation is increased. To investigate this, a modified incremental conductance technique is presented in this paper. It is shown that this system does respond accurately and reduces the steady-state oscillations when solar irradiation is increased. Finally, simulations of the conventional and modified algorithm are compared, and the results show that the modified algorithm provides an accurate response to a sudden increase in solar irradiation.


Author(s):  
Oday A. Ahmed ◽  
Hussain K Sayed ◽  
Kanaan A Jalal ◽  
Dhari Y. Mahmood ◽  
Waleed H. Habeeb

With the growing interest in renewable energy resources, a various number of studies and development for photovoltaic (PV) systems have investigated to satisfy global needs in energy. The larger interest in PV resources has increased request for suitable apparatus with which to test PV systems. This paper deals with the design of an indoor PV source emulator using an actual PV panel to facilitate PV system testing under real environment conditions. A low-cost Arduino Mega256 microcontroller-based data acquisition system (DAQ) approach has been developed to collect the data in term of voltage, power and current based on different levels of light intensity and temperature as well as under partial shading conditions. Hence, the proposed system is not just a solar emulator but it’s a complete solar emulator-DAQ system that can emulate the sunlight and monitor the PV parameters and then collect and store the data for further research investigation. The proposed monitoring system provides real time update of the solar panel characteristics at any time in the year without relying on the weather changes. This data acquisition system will be of superior interest for undergraduate and graduate students as it is both open-source and flexible. The details design of the proposed PV solar emulator and data logger and its implementation are described.


2020 ◽  
Vol 23 (1) ◽  
pp. 35-44
Author(s):  
Ali H. Numan ◽  
Zahraa Salman Dawood ◽  
Hashim A. Hussein

The partial shading conditions have a significant effect on the performance of Photovoltaic system and the ability of delivering energy. In this study, the impact of different partial shading on the mono crystalline (88W) PV module performance was investigated in this study. Horizontal string, vertical string, and single cell shading at different percentage of shading area have been studied. It is found that the horizontal string shading is more severe on the efficiency of the PV panel. In contrast, the efficiency of PV panel with cellular and vertical cell shading was less during the tests. The experimental results showed that the power losses were 99.8%, 66% and 56.8 % for horizontal, cellular and vertical shading respectively via applied non transparent material as shading element by 100% of shading area at 500 W/m2. Moreover, transparent material used to shade whole module horizontally, different shading area and different radiation level applied to find electrical characteristics of the module under these conditions. The results show that at 800W/m2 of irradiation levels and no shading condition the power was 68.6W, by increase shading area by 20% in each step, the power reducing by 44.94, 47.58, 49.42, 50.57 and 52.4% in compared with their initial value at no shading condition.


Author(s):  
H. Rahimi Mirazizi ◽  
M. A. Shafiyi

One of the issues of grid-connected photovoltaic systems is the effect of the partial shading on the key parameters and performance of the system. In practice, a share of the entire PV panel may shadded because of the various reasons, inevitably. In this case, the key parameters of the system output are affected with respect to the shading extent and paradigm. In this paper, the effects of the various partial shading patterns on the ouput of the system are examined. This is performed by deriving relevant equations and appropriate modeling of the system and defining different scenarios. The analysis on the system performance is carried out on the dominant output parameters including panel voltage, panel power, and total harmonic distortion (THD) of the inverter. Also, the study considers the effect of using bypass diodes in the panels or not. Addintionally, to compare derived conclusions, the study is implementd on a practical system. The set up is made up of a 7-level multi-level inverter, a Z-source converter, and 1 kW lateral circuitry. The real world test results of the study demonstrate a negligible deviation compared to the simulation results.


Author(s):  
K. Burhanudin ◽  
N.A. Kamarzaman ◽  
A.A.A. Samat ◽  
A.I. Tajudin ◽  
S.S. Ramli ◽  
...  

Power-Voltage (P-V) curve and Current-Voltage (I-V) curve determine the performance of the PV system. In this work, the arrangements of the PV module were reconstructed by adding the number of PV module in 3 strings configuration from 5 to 45. This method enhance the performance of the PV system as it able to show the characteristic of the P-V and I-V curve during partial shading and maximum irradiance despite higher number of PV panel. This study focuses on improving the PV array configuration and simulation speed of the PV panel. The simulation of small size PV array is possible, but the problem lies when the number of string and PV module used increases. New PV array configuration is flexible and easy to add string and increase the number of PV module. PV array configuration was modeled using MATLAB/SIMULINK software.


2020 ◽  
Vol 12 (2) ◽  
pp. 608 ◽  
Author(s):  
Ramadan J. Mustafa ◽  
Mohamed R. Gomaa ◽  
Mujahed Al-Dhaifallah ◽  
Hegazy Rezk

This study scrutinizes the reliability and validity of existing analyses that focus on the impact of various environmental factors on a photovoltaic (PV) system’s performance. For the first time, four environmental factors (the accumulation of dust, water droplets, birds’ droppings, and partial shading conditions) affecting system performance are investigated, simultaneously, in one study. The results obtained from this investigation demonstrate that the accumulation of dust, shading, and bird fouling has a significant effect on PV current and voltage, and consequently, the harvested PV energy. ‘Shading’ had the strongest influence on the efficiency of the PV modules. It was found that increasing the area of shading on a PV module surface by a quarter, half, and three quarters resulted in a power reduction of 33.7%, 45.1%, and 92.6%, respectively. However, results pertaining to the impact of water droplets on the PV panel had an inverse effect, decreasing the temperature of the PV panel, which led to an increase in the potential difference and improved the power output by at least 5.6%. Moreover, dust accumulation reduced the power output by 8.80% and the efficiency by 11.86%, while birds fouling the PV module surface was found to reduce the PV system performance by about 7.4%.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1439 ◽  
Author(s):  
Xiaoguang Liu ◽  
Yuefeng Wang

A photovoltaic (PV) array is composed of several panels connected in series-parallel topology in most actual applications. However, partial shading of a PV array can dramatically reduce power generation. This paper presents a new reconfiguration method to extract more power from PV arrays under partial shade conditions. The method is designed using the effective maximum power point current and voltage of a PV panel. Its advantages involve (i) the method reconfigures the PV array without measuring the irradiance profile, and (ii) the reconfiguration is executed on the level of a PV module. Based on these two aspects, the method disperses the shade uniformly within the PV array, reducing the mismatch loss significantly and increasing power generation. The performance of the proposed method is investigated for different shade patterns and results show improved performance under partial shade conditions.


2021 ◽  
Vol 54 (6) ◽  
pp. 847-852
Author(s):  
Asadi Suresh Kumar ◽  
Vyza Usha Reddy

One of the major concerns for continuous solar photovoltaic (PV) generation is partial shading. The movement of clouds, shadow of buildings, trees, birds, litter and dust, etc., can lead to partial shadow conditions (PSCs). The PSCs have caused inconsistent power losses in the PV modules. This leads to a shortage of electricity production and the presence in the PV curve of several peaks. One of the simplest solutions to PSC’s is the PV configurations. The objective of this paper is modelling and simulation of solar PV system in various shading scenarios for KC200GT 200 W, 5 x 5 configurations that includes Series/Parallel (SP), Total-Cross-Tied (TCT), Triple-Tied (TT), Bridge-Link (BL) configurations. Real time PSC’s such as corner, center, frame, random, diagonal, right side end shading conditions are evaluated under all PV array configurations. A comparative analysis is carried out for the parameters such as open circuit voltage, short circuit current, maximum power point, panel mismatch losses, fill factor, efficiency under all PV configurations considering PSC’s. From the comparison analysis best configuration will be presented.


2019 ◽  
Vol 29 (01) ◽  
pp. 2050017
Author(s):  
S. Krishnan ◽  
K. Sathiyasekar

To extract the maximum solar power from the photovoltaic (PV) panel/array with the high conversion efficiency under partial shading condition (PSC), this paper discusses a new and an efficient maximum power point (MPP) tracking algorithm. The proposed algorithm is based on the bio-inspired salp swarm optimization (SSO), and the algorithm forecasts the global MPP (GMPP) with the fast convergence to GMPP and high tracking efficiency. The SSO algorithm thus reduces the computational burden as encountered in whale optimization algorithm (WOA), and gray wolf optimization (GWO) algorithm discussed in the various literatures. The modeling and simulation of the proposed SSO algorithm are done with the help of Matlab/Simulink software to validate the effectiveness to locate the MPP during PSCs. The simulation results prove that the proposed SSO algorithm exhibits a high PV power output with the tracking efficiency of more than 95% at the faster convergence rate to GMPP. The SSO algorithm is experimentally verified on the conventional boost converter under different shading conditions.


Sign in / Sign up

Export Citation Format

Share Document