Handbook of Air Quality and Climate Change

2020 ◽  
Keyword(s):  
2021 ◽  
Author(s):  
Manfred A. Lange

<p>The environmental conditions in urban settings are subject to processes and conditions within cities, on the one hand, and have a strong bearing on the overall conditions and the quality of life of the cities’ inhabitants, on the other. The built environment, in general, and buildings and infrastructure, in particular, play a major role in shaping the urban environment. At the same time, environmental conditions affect strongly the conditions within and outside of buildings.</p><p>The continued growth of cities in the Eastern Mediterranean and Middle Eastern (EMME) region, the demise of environmental quality adds to the challenges faced by their inhabitants. Of the many factors contributing to these threats, climate change and its amplification in urban structures, the increasing load of pollutants in air and water and the rising numbers of dust storms as well as the growing amount of solid and liquid waste stand out.</p><p>The significant increase in the number of cars and the rising quantity of energy production has contributed to ever-worsening air quality in EMME cities. More specifically, urban road transport represents one of the major sources of air-borne pollutants in many of these cities and causes substantial threats to the health of their inhabitants.</p><p>The Middle East and North Africa (MENA) and the EMME region are major sources of desert dust storms that travel north and east to Europe and Asia, thereby strongly affecting cities and their air quality in the EMME. Dust storms and suspended bacteria and viruses pose serious consequences to communities in the EMME region and are likely to worsen due to ongoing climate change.</p><p>Present and future changes in climate conditions will have numerous adverse effects on the EMME region, in general, and on EMME cities, in particular. This includes extended heat waves as well as enhanced water scarcity for inhabitants and green spaces. In combination with poor air quality, this will cause severe health risks for urban populations as well as the need for increased and extended periods of space cooling in private, commercial and municipal buildings. The greater needs for water and energy in urban structures are interrelated and have been described by the Water-Energy Nexus. The higher demand for water is increasingly satisfied through desalination, which is particularly energy-intensive. The need for additional space cooling during hot spells in cities will require more electricity.</p><p>The high rate of population growth, ever-increasing urbanization, changes in lifestyles and economic expansion in the EMME countries result in steadily increasing volumes of solid and liquid waste. The waste problems are exacerbated by the rising number of displaced persons and refugees in growing camps in some of the EMME countries, particularly, in Turkey, Jordan and Lebanon. The huge quantity of daily produced sewage sludge in Middle Eastern countries presents a serious challenge due to its high treatment costs and risks to the environment and human health.</p><p>This paper will address some of these challenges, which call for holistic and interdisciplinary efforts to design effective and sustainable adaptation strategies in EMME cities.</p>


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Longjian Liu ◽  
Hui Liu ◽  
Xuan Yang ◽  
Feng Jia ◽  
Mingquan Wang

Introduction and Hypothesis: Stroke is a leading cause of death and the major cause of disability in the world. However, few studies applied multilevel regression techniques to explore the association of stroke risk with climate change and air pollution. In the study, we aimed to test the hypothesis that the disproportionately distributed stroke rates across the counties and cities within a country are significantly associated with air pollution and temperature. Methods: We used data from U.S. 1118 counties in 49 states, which had estimated measures of particulate matter (PM)2.5 for the years 2010-2013, and data from China 120 cities in 32 provinces (including 4 municipalities), which had measures of Air Pollution Index (API) for the years 2012-2013. We assessed the association between air quality and prevalence of stroke using spatial mapping, autocorrelation and multilevel regression models. Results: Findings from the U.S. show that the highest average PM2.5 level was in July (10.2 μg/m3) and the lowest in October (7.63 μg/m3) for the years 2010-2013. Annual average PM2.5 levels were significantly different across the 1118 counties, and were significantly associated with stroke rates. Multilevel regression analysis indicated that the prevalence of stroke significantly increased by 1.19% for every 10 μg/m3 increase of PM2.5 (p<0.001). Significant variability in PM2.5 by states was observed (p=0.019). More than 70% of the variation in stroke rates existed across the counties (p=0.017) and 18.7% existed across the states (p=0.047). In China, the highest API was observed in the month of December, with a result of 75.76 in 2012 and 97.51 in 2013. The lowest API was observed in July, with a result of 51.21 in 2012, and 54.23 in 2013. Prevalence of stroke was significantly higher in cities with higher API concentrations. The associations between air quality and risk of stroke were significantly mediated by temperatures. Conclusions: The study, using nationally representative data, is one of the first studies to address a positive and complex association between air quality and prevalence of stroke, and a potential interaction effect of temperatures on the air - stroke association.


2021 ◽  
Author(s):  
Andreas Petzold ◽  
Valerie Thouret ◽  
Christoph Gerbig ◽  
Andreas Zahn ◽  
Martin Gallagher ◽  
...  

&lt;p&gt;IAGOS (www.iagos.org) is a European Research Infrastructure using commercial aircraft (Airbus A340, A330, and soon A350) for automatic and routine measurements of atmospheric composition including reactive gases (ozone, carbon monoxide, nitrogen oxides, volatile organic compounds), greenhouse gases (water vapour, carbon dioxide, methane), aerosols and cloud particles along with essential thermodynamic parameters. The main objective of IAGOS is to provide the most complete set of high-quality essential climate variables (ECV) covering several decades for the long-term monitoring of climate and air quality. The observations are stored in the IAGOS data centre along with added-value products to facilitate the scientific interpretation of the data. IAGOS began as two European projects, MOZAIC and CARIBIC, in the early 1990s. These projects demonstrated that commercial aircraft are ideal platforms for routine atmospheric measurements. IAGOS then evolved as a European Research Infrastructure offering a mature and sustainable organization for the benefits of the scientific community and for the operational services in charge of air quality and climate change issues such as the Copernicus Atmosphere Monitoring Services (CAMS) and the Copernicus Climate Change Service (C3S). IAGOS is also a contributing network of the World Meteorological Organization (WMO).&lt;/p&gt; &lt;p&gt;IAGOS provides measurements of numerous chemical compounds which are recorded simultaneously in the critical region of the upper troposphere &amp;#8211; lower stratosphere (UTLS) and geographical regions such as Africa and the mid-Pacific which are poorly sampled by other means. The data are used by hundreds of groups worldwide performing data analysis for climatology and trend studies, model evaluation, satellite validation and the study of detailed chemical and physical processes around the tropopause. IAGOS data also play an important role in the re-assessment of the climate impact of aviation.&lt;/p&gt; &lt;p&gt;Most important in the context of weather-related research, IAGOS and its predecessor programmes provide long-term observations of water vapour and relative humidity with respect to ice in the UTLS as well as throughout the tropospheric column during climb-out and descending phases around airports, now for more than 25 years. The high quality and very good resolution of IAGOS observations of relative humidity over ice are used to better understand the role of water vapour and of ice-supersaturated air masses in the tropopause region and to improve their representation in numerical weather and climate forecasting models. Furthermore, CAMS is using the water vapour vertical profiles in near real time for the continuous validation of the CAMS atmospheric models. &lt;/p&gt;


Author(s):  
Lisa Schweitzer ◽  
Linsey Marr

This article focuses on the issue of improving air quality and environmental health in urban planning. It suggests that the planning assumptions about emissions reductions, air quality, and climate change may reflect more wishful thinking and project marketing than effective air quality and climate planning, and argues that the goal of planning analysis in air quality seldom, if ever, considers neighborhoods or people. The article also compares and contrasts current planning and regulatory approaches with how community and environmental justice advocates frame air-quality issues.


2008 ◽  
Vol 8 (2) ◽  
pp. 7781-7804 ◽  
Author(s):  
K.-J. Liao ◽  
E. Tagaris ◽  
K. Manomaiphiboon ◽  
C. Wang ◽  
J.-H. Woo ◽  
...  

Abstract. Impacts of uncertain climate forecasts on future regional air quality are investigated using downscaled MM5 meteorological fields from the NASA GISS and MIT IGSM global climate models and the CMAQ model in 2050 in the continental US. Three future climate scenarios: high-extreme, low-extreme and base, are developed for regional air quality simulations. GISS, with the IPCC A1B scenario, is used for the base case. IGSM results, in the form of probabilistic distributions, are used to perturb the base case climate to provide 0.5th and 99.5th percentile climate scenarios. Impacts of the extreme climate scenarios on concentrations of summertime fourth-highest daily maximum 8-h average ozone are predicted to be up to 10 ppbv (about one-eighth of the current NAAQS of ozone) in some urban areas, though average differences in ozone concentrations are about 1–2 ppbv on a regional basis. Differences between the extreme and base scenarios in annualized PM2.5 levels are very location dependent and predicted to range between −1.0 and +1.5 μg m−3. Future annualized PM2.5 is less sensitive to the extreme climate scenarios than summertime peak ozone since precipitation scavenging is only slightly affected by the extreme climate scenarios examined. Relative abundances of biogenic VOC and anthropogenic NOx lead to the areas that are most responsive to climate change. Such areas may find that climate change can significantly offset air quality improvements from emissions reductions, particularly during the most severe episodes.


2015 ◽  
Vol 15 (21) ◽  
pp. 31385-31432
Author(s):  
Y. H. Lee ◽  
D. T. Shindell ◽  
G. Faluvegi ◽  
R. W. Pinder

Abstract. We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration), and other US emissions and the rest of the world emissions are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in the future but result in positive radiative forcing. Surface PM2.5 is reduced by ~ 2 μg m−3 on average over the US, and surface ozone by ~ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the US, mainly due to the PM2.5 reduction (~ 74 200 lives saved). The air quality regulations reduces the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading a strong positive radiative forcing (RF) by both aerosols direct and indirect forcing: total RF is ~ 0.04 W m−2 over the globe; ~ 0.8 W m−2 over the US. Under the hypothetical climate policy, future US energy relies less on coal and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it leads to climate dis-benefits over the US. In 2055, the US mean total RF is +0.22 W m−2 due to positive aerosol direct and indirect forcing, while the global mean total RF is −0.06 W m−2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multi-national efforts to reduce GHGs emissions and (2) to target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.


Author(s):  
Mehmetali AK ◽  
◽  
Aslı GÜNEŞ GÖLBEY ◽  

One of the most important environmental problems in today's world is climate change caused by greenhouse gases. Due to the increase in CO2 emissions from greenhouse gases, climate change is increasing and moving towards the point of no return. In this process, many ideas have been developed to combat climate change. One of these ideas is that cities should be sustainable. In order for cities to be sustainable, activities such as expanding the use of renewable energy resources in cities, increasing green and environmentally friendly transportation, improving air quality, and minimizing carbon emissions should be carried out. In this context, open green areas have important effects in terms of improving air quality, reducing the heat island effect in cities and especially keeping carbon emissions to a minimum. Thus, the efficiency and productivity of carbon capture and storage of green areas come to the fore. There are several methods to measure the carbon capture and storage efficiency of green areas and to evaluate their efficiency. In this study, the methods used in determining open green areas in cities and evaluating biomass productivity in these areas will be examined.


Sign in / Sign up

Export Citation Format

Share Document