Development of Cost-Effective Endurance Test Rig with Integrated Algorithm for Safety

Author(s):  
Emanuele Lindo Secco ◽  
Rashid Abdulrahman ◽  
Ian Felmeri ◽  
Atulya K. Nagar
2017 ◽  
Vol 8 (4) ◽  
pp. 653-671 ◽  
Author(s):  
Mukesh Prasad ◽  
K. V. Gangadharan

Author(s):  
Nathanael D. Annis ◽  
Steve C. Southward

This paper presents the design and validation of an experimental test rig for direct visual and analytic comparison of fully active and semi-active suspension control algorithms using electromagnetic actuation. A linear mathematical model simulation of the test rig is presented, as well as experimental validation test results comparing passive against fully active and semi-active skyhook control algorithms. A variety of fully active and semi-active vibration control methods have been developed for primary suspensions. Our goal is to provide a development platform in which new algorithms can easily be implemented, in a cost effective manner on a physical system, and compared against existing algorithms to determine the performance characteristics of each. This platform will provide a standard of evaluation in which multiple control algorithms can be tested, and will help to simplify the design process.


2021 ◽  
Vol 65 (2) ◽  
pp. 163-170
Author(s):  
Illés Vörös ◽  
László Turányi ◽  
Balázs Várszegi ◽  
Dénes Takács

This paper presents the design and implementation of a small-scale hardware-in-the-loop test environment for lateral vehicle dynamics controllers. The test rig consists of a conveyor belt and a 1:10 scale model vehicle. The vehicle is anchored to the frame of the conveyor belt using a special fixture, which constrains only the longitudinal displacement of the car. Therefore, the longitudinal velocity of the vehicle is provided by the conveyor belt, while the steering is generated by the computational unit, where various control methods can be implemented. The test rig is equipped with sensors that provide accurate measurements of the position and orientation of the car, which can be used as feedback in the control algorithms. The paper includes a case study, where the analytical stability analysis of a lane-keeping controller is verified with experiments on the test rig. The proposed test environment provides a compact, cost effective and versatile framework for the testing of various steering control methods in a running vehicle, while maintaining the benefits of a controlled laboratory environment. The experimental setup can also be used for educational and demonstrational purposes.


2001 ◽  
Author(s):  
D. Lee Hill ◽  
Zheji Liu ◽  
Jim Sorokes

Abstract The use of a virtual test rig to numerically test turbomachinery hardware can be extremely cost effective if the results obtained are physically correct and relatively accurate. The literature clearly shows that a lot of emphasis has been placed on single component validation optimized for a single operation point. There are few studies, however, that have clearly documented the numerical issues surrounding the modeling of a complete stage of a centrifugal compressor across its operating range. This effort uses a generic low flow stage design to demonstrate the accuracy to expect from the current state-of-the-art technology found in both commercial and research computational fluid dynamics (CFD) software. Even effects stemming from secondary flow paths are considered in this study. For design and off-design operation toward surge, 360-degree transient calculations are compared to those obtained from using the steady state fixed-rotor approximation. Finally, all work is ultimately compared to detailed test data obtained from single stage testing.


Author(s):  
Justin Langdon ◽  
Steve C. Southward

This paper discusses the development of an improved design for a tire-coupled quarter-vehicle testing rig. The use of indoor-based simulation tools has become a mainstay in vehicle testing for the automotive and motorsports industries. Testing on a quarter-vehicle rig provides a cost effective means for making accurate and repeatable measurements that enables the user to perform a relatively large number of tests in a short amount of time. A review of current quarter-vehicle test platforms, both commercially available and in academic research labs, indicated that many desired functional requirements were not available. The goal of this effort was to develop a new quarter-vehicle rig with expanded capabilities that are not simultaneously present in the current state-of-the-art. The desired functional requirements are: accommodation of a wide range of actual vehicle suspension components including the tire and wheel, weight transfer due to braking and acceleration, aerodynamic forces, and vehicle roll. The test rig was constructed and tested using a Porsche 996 suspension. The suspension dynamics were characterized by fitting the parameters of a linear dynamic model to experimental response data from the rig. The design and performance of this new quarter-vehicle test rig is shown to be a cost effective solution for meeting the broad range of functional requirements.


10.29007/lw5b ◽  
2018 ◽  
Author(s):  
Gaurav Patel ◽  
Akash Patel ◽  
Mukesh Makwana ◽  
Neeraj Chavda

Valves are widely used in numerous industries like Beverage, Food, Dairy, Cosmetic, Pharmaceutical and Biotech to serve various purposes. Hence, it is strongly needed that each valve must be tested thoroughly for proper functioning. The equipment used for testing of valves is known as test-rig. At present, no standard test-rig is available in the market for testing of valves. This study is a part of an attempt to develop a cost-effective customized test-rig for multiple valve testing. In present study, pressure-drop in various cross-sections of the proposed.


2004 ◽  
Author(s):  
Francisco Bisotto Jardim ◽  
Alberto Tamagna
Keyword(s):  
Test Rig ◽  

Author(s):  
Maximilian Passmann ◽  
Stefan aus der Wiesche

A cost-effective test rig is presented that allows for the experimental investigation of supersonic flows for educational purposes. The individual units for the test rig were designed and built by students as part of their degrees. The test rig allows for operating times up to 10 seconds and features a nozzle test section, that can house different test objects. The divergent part of the de Laval nozzle geometry is designed using the method of characteristics for planar two-dimensional supersonic flow. State of the art 3D printing technology has been utilized to manufacture the nozzle geometry. Both optical and pneumatic measurement techniques have been adopted for the current setup. A z-type schlieren setup with two parabolic mirrors is used to perform flow visualization. The entire run can be recorded with a digital high speed camera. Stagnation pressure and temperature are measured in the pressure reservoir. Measurements are used to demonstrate basic thermodynamic effects such as the depressurization of gas-filled pressure vessels. Schlieren photography is used to graphically derive the Mach number and some aspects of Mach waves, oblique shock waves, and expansion waves are discussed. Finally, some effects of surface roughness on the flow field are addressed in this paper. Initial tests with the untreated nozzle geometry led to a fine pattern of very weak oblique shock waves in the supersonic part of the nozzle, that were caused by the finite layer thickness of the printer.


Sign in / Sign up

Export Citation Format

Share Document