Design and Analysis of Transmission Tower Under Wind Loading

Author(s):  
Swabarna Roy ◽  
Chinmay Kumar Kundu
2014 ◽  
Vol 62 (1) ◽  
pp. 91-102
Author(s):  
B. Blachowski ◽  
W. Gutkowski

Abstract In this study, a relatively simple method of discrete structural optimization with dynamic loads is presented. It is based on a tree graph, representing discrete values of the structural weight. In practical design, the number of such values may be very large. This is because they are equal to the combination numbers, arising from numbers of structural members and prefabricated elements. The starting point of the method is the weight obtained from continuous optimization, which is assumed to be the lower bound of all possible discrete weights. Applying the graph, it is possible to find a set of weights close to the continuous solution. The smallest of these values, fulfilling constraints, is assumed to be the discrete minimum weight solution. Constraints can be imposed on stresses, displacements and accelerations. The short outline of the method is presented in Sec. 2. The idea of discrete structural optimization by means of graphs. The knowledge needed to apply the method is limited to the FEM and graph representation. The paper is illustrated with two examples. The first one deals with a transmission tower subjected to stochastic wind loading. The second one with a composite floor subjected to deterministic dynamic forces, coming from the synchronized crowd activities, like dance or aerobic.


2013 ◽  
Vol 671-674 ◽  
pp. 650-654
Author(s):  
Peng Yun Li ◽  
Bo Chen ◽  
Yu Zhou Sun

The field inspection and safety assessment of a transmission angle tower are actively carried out in this study. The field measurement and inspection are firstly introduced and then the structural model is constructed based on finite element approach with the aiding of commercial package ANSYS. The equation of motion of the transmission tower-line system is established for numerical analysis. The gravity, base settlement and dynamic wind loading are applied on the tower to examine the structural responses. The deformation and stresses distribution of the transmission angle tower are computed to explore the damage reasons. The made observations indicate that the peak stresses of some members are large than the permitted yielding stresses of steel material. The damage event is induced by coupling loading effects


2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Xiao Zhu ◽  
Ge Ou

The accuracy of transmission tower-line system simulation is highly impacted by the transmission line model and its coupling with the tower. Owing to the high geometry nonlinearity of the transmission line and the complexity of the wind loading, such analysis is often conducted in the commercial software. In most commercial software packages, nonlinear truss element is used for cable modeling, whereas the initial strain condition of the nonlinear truss under gravity loading is not directly available. Elastic catenary element establishes an analytical formulation for cable structure under distributed loading; however, the nonlinear iteration to reach convergence can be computational expensive. To derive an optimal transmission tower-line model solution with high fidelity and computational efficiency, an open-source three-dimensional model is developed. Nonlinear truss element and elastic catenary element are considered in the model development. The results of the study imply that both elements are suitable for the transmission line model; nevertheless, the initial strain in nonlinear truss element largely impacts the model accuracy and should be calibrated from the elastic catenary model. To cross-validate the developed models on the coupled transmission tower and line, a one-span eight-line system is modeled with different elements and compared with several state-of-the-art commercial packages. The results indicate that the displacement time-history root-mean-square error (RMSE) of the open-source transmission tower-line model is less than 1 % and with a 66 % computational time reduction compared with the ANSYS model. The application of the open-source package transmission tower-line model on extreme wind speed considering the aerodynamic damping is further implemented.


2015 ◽  
Vol 744-746 ◽  
pp. 248-252
Author(s):  
Wen Ping Xie ◽  
Bo Chen ◽  
Peng Yun Li ◽  
Xiao Fen Gong

The research on dynamic responses of a transmission tower under monsoon wind is actively carried out in this study. A real transmission tower-line system constructed in the southern coastal areas of China is taken as an example to investigate the structural performance subjected to monsoon wind. The finite element model of the transmission tower-line system is established with the aiding of commercial package. The equation of motion of the transmission tower-line system under monsoon wind is established. The dynamic wind loading are applied on the tower-line system to examine the structural responses.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Bo Chen ◽  
Wei-hua Guo ◽  
Peng-yun Li ◽  
Wen-ping Xie

This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers.


2016 ◽  
Vol 22 (1) ◽  
pp. 65-87 ◽  
Author(s):  
T.G. Mara ◽  
H.P. Hong ◽  
C.S. Lee ◽  
T.C.E. Ho

2018 ◽  
Vol 18 (02) ◽  
pp. 1850029 ◽  
Author(s):  
F. Y. Wang ◽  
Y. L. Xu ◽  
W. L. Qu

Collapse of transmission towers due to downbursts is often initiated by local failure of key structural members, while the local failure of key structural members is related to local material and geometrical nonlinearities. This paper presents a multi-scale finite element (FE) model for the failure analysis of transmission towers under downburst-induced wind loading. The potential local failure areas of the tower are modeled by shell or solid elements, and the remaining parts by beam elements. In this way, the failure of the tower can be accurately simulated on the one hand and the computational effort can be reduced on the other hand. This paper first introduces how to determine the downburst-induced wind loading on transmission towers. Both the conventional beam and multi-scale FE models of the transmission tower are then developed and used in the failure analysis. A comparison of the failure results obtained by the two FE models show that the multi-scale FE model can effectively simulate the stress concentration of angle members around the bolt connections and the cross-section plastic collapse of key structural members, leading to a different failure pattern for the tower from the conventional FE method. It is suggested that the multi-scale FE model should be used for better accuracy in the failure analysis of transmission towers under downburst loading.


2009 ◽  
Vol 09 (04) ◽  
pp. 661-685 ◽  
Author(s):  
BO CHEN ◽  
JIN ZHENG ◽  
WEILIAN QU

Transmission tower-line system is a high-rise structure with low damping and it is therefore prone to strong wind excitation. In this paper, the control of wind-induced response of transmission tower-line system is carried out by using magnetorheological (MR) dampers. The effects of brace stiffness of damper are introduced and a multi-degree-of-freedom (MDOF) model is developed for both in-plane/out-of-plane vibration of transmission tower-line system. Two semi-active control strategies are proposed for the vibration mitigation of tower-line system. The first one is based on fixed increment of controllable damper force whereas the second one is a clipped-optimal strategy based on fuzzy control principle. The optimal parameters of the MDOF model of transmission line are investigated. A real transmission tower-line system constructed in China is taken as an example to examine the feasibility and reliability of the proposed approach. A parametric study is conducted for the effects of brace stiffness of MR damper, wind loading intensity, and parameters of MR fluids on the control performance. The results demonstrate that the incorporation of MR dampers into the transmission tower-line system can substantially suppress the wind-induced responses of transmission tower if the damper parameters are optimally determined. The performance of the two kinds of semi-active control approaches is better than that of a passive control approach.


2012 ◽  
Vol 226-228 ◽  
pp. 1240-1249 ◽  
Author(s):  
Chris Ladubec ◽  
Ashraf A. El Damatty ◽  
Ayman M. El Ansary

Downburst winds, which are a source of extreme wind loading and are referred to as high intensity wind (HIW) loads, have caused numerous transmission tower failures around the world. A previous investigation was conducted to study the performance of a transmission tower under downburst wind loading, where the behaviour of the tower was limited to a linear response. In the current study, a nonlinear frame element is used to assess the performance of the tower under downburst wind loading. The behaviour is studied using downburst wind field data obtained from a computational fluid dynamics (CFD) model. In order to assess the geometric nonlinear behaviour of the tower, the results are compared to a previous linear analysis for a number of critical configurations of a downburst. The nonlinear analysis predicted that peak axial loads in certain members can be up to 34% larger than those predicted by the linear analysis.


Sign in / Sign up

Export Citation Format

Share Document