Engineering of O2 Electrodes by Surface Modification for Corrosion Resistance in Zinc–Air Batteries

Author(s):  
Imran Karajagi ◽  
K. Ramya ◽  
Prakash C. Ghosh ◽  
A. Sarkar ◽  
N. Rajalakshmi
2008 ◽  
Author(s):  
P. M. Natishan ◽  
F. J. Martin ◽  
E. J. Lemieux ◽  
T. M. Newbauer ◽  
R. Rayne ◽  
...  

2018 ◽  
Vol 27 (8) ◽  
pp. 1388-1400 ◽  
Author(s):  
Tejinder Pal Singh Sarao ◽  
Harpreet Singh ◽  
Hazoor Singh

2018 ◽  
Vol 207 ◽  
pp. 03023
Author(s):  
Masataka Ijiri ◽  
Toshihiko Yoshimura

In this study, to further improve current multifunction cavitation (MFC) techniques, the surface modification of Cr‒Mo steel was further investigated using 1200 W ultrasonic power. In MFC using 1200 W ultrasonic power, the corrosion resistance, and compressive residual stress of the specimens were improved when the processing time was 10 min; however, decarburization occurred at longer processing times, causing these characteristics to worsen. The decarburization that occurs at high ultrasonic outputs may be caused by an increase in the water temperature, and of the heating of the specimen surface.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 397 ◽  
Author(s):  
Hehong Zhang ◽  
Xiaofeng Zhang ◽  
Xuhui Zhao ◽  
Yuming Tang ◽  
Yu Zuo

A chemical conversion coating on 5052 aluminum alloy was prepared by using K2ZrF6 and K2TiF6 as the main salts, KMnO4 as the oxidant and NaF as the accelerant. The surface morphology, structure and composition were analyzed by SEM, EDS, FT–IR and XPS. The corrosion resistance of the conversion coating was studied by salt water immersion and polarization curve analysis. The influence of fluorosilane (FAS-17) surface modification on its antifouling property was also discussed. The results showed that the prepared conversion coating mainly consisted of AlF3·3H2O, Al2O3, MnO2 and TiO2, and exhibited good corrosion resistance. Its corrosion potential in 3.5 wt % NaCl solution was positively shifted about 590 mV and the corrosion current density was dropped from 1.10 to 0.48 μA cm−2. By sealing treatment in NiF2 solution, its corrosion resistance was further improved yielding a corrosion current density drop of 0.04 μA cm−2. By fluorosilane (FAS-17) surface modification, the conversion coating became hydrophobic due to low-surface-energy groups such as CF2 and CF3, and the contact angle reached 136.8°. Moreover, by FAS-17 modification, the corrosion resistance was enhanced significantly and its corrosion rate decreased by about 25 times.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jung Eun Park ◽  
Il Song Park ◽  
Tae Sung Bae ◽  
Min Ho Lee

Titanium (Ti) is often used as an orthopedic and dental implant material due to its better mechanical properties, corrosion resistance, and excellent biocompatibility. Formation of TiO2nanotubes (TiO2NTs) on titanium is an interesting surface modification to achieve controlled drug delivery and to promote cell growth. Carbon nanotubes (CNTs) possess excellent chemical durability and mechanical strength. The use of CNTs in biomedical applications such as scaffolds has received considerable attention in recent years. The present study aims to modify the surface of titanium by anodizing to form TiO2NTs and subsequently deposit CNTs over it by electrophoretic deposition (EPD). Characteristic, biocompatibility, and apatite forming ability of the surface modified samples were evaluated. The results of the study reveal that CNTs coating on TiO2nanotubes help improve the biological activity and this type of surface modification is highly suitable for biomedical applications.


2018 ◽  
Vol 6 (43) ◽  
pp. 6936-6949 ◽  
Author(s):  
Hao Zhang ◽  
Lingxia Xie ◽  
Xiaolong Shen ◽  
Tengda Shang ◽  
Rifang Luo ◽  
...  

A catechol/polyethyleneimine conversion coating on a MgZnMn alloy possessed good corrosion resistance. Heparin was further grafted on it and this showed the potential for surface modification of magnesium-based vascular implants.


Sign in / Sign up

Export Citation Format

Share Document