Characterization of Engine Combustion Flames Using Inverse Abel Transform

Author(s):  
Shashikant Verma ◽  
Rajneesh Kaushal
Author(s):  
Pramod S. Mehta ◽  
M. Achuth

A well-timed turbulence due to tumble in SI engines is found to be of substantial benefit to the engine combustion process. A mean flow analysis of tumble motion in conjunction with k-ε turbulence model has been developed to provide a detailed mechanism for turbulence enhancement due to tumble. Considering that the tumble phenomenon is highly geometry dependant, an attempt is made to relate tumble-generated turbulence to the parameters relating to intake conditions and combustion chamber geometry. Finally, a new parameter ‘vortex life span’ has been proposed to characterize tumble and its turbulence, which globally encompasses intake and combustion chamber related features. The sensitivity of this parameter is demonstrated at various operating conditions. It is found that the ‘vortex life span’ has an inverse relationship with commonly measured BDC tumble ratio and is more sensitive to the chamber geometry effects.


Author(s):  
Camille Hespel ◽  
Moez Ben Houidi ◽  
Hugo Ajrouche ◽  
Fabrice Foucher ◽  
Yahia Haidous ◽  
...  

One of the objective of Engine Combustion Network (ECN), (https://ecn.sandia.gov/) is to provide experimental results with high accuracy in order to validate model and reach new steps in scientific understanding of spray combustion at conditions specific to engines. The ECN community defines different target conditions, experimental diagnostics and post processing methods to facilitate the comparison of experimental and simulations studies performed in different facilities or models. In this context two French laboratories propose two new facilities, based on Rapid Compression Machines to reach the ECN spray A conditions. In this paper, the results of liquid and vapour spray penetration as well as Ignition Delay (ID) and Lift-Off Length (LOL) obtained with these Rapid Compression Machines are compared to the results obtained in the Constant Volume Preburn (CVP) vessel of IFPEN. The specificities of each experimental apparatus allow to bring complementary elements of understanding like confinement effects. In non-reactive condition, the liquid and vapour sprays were characterized by Diffused-Back Illumination and Schlieren technique, and in reactive conditions, the LOL and the ID by OH* chemiluminescence. The analysis of the results with regard to the boundary conditions (temperature, velocity, confinement) make it possible to validate these two new facilities and contribute to enhance the database of ECN, highlighting the confinement effect typical of piston engine operation.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Sign in / Sign up

Export Citation Format

Share Document