scholarly journals Characterization of the ECN spray A in different facilities. Part 2: spray vaporization and combustion

Author(s):  
Camille Hespel ◽  
Moez Ben Houidi ◽  
Hugo Ajrouche ◽  
Fabrice Foucher ◽  
Yahia Haidous ◽  
...  

One of the objective of Engine Combustion Network (ECN), (https://ecn.sandia.gov/) is to provide experimental results with high accuracy in order to validate model and reach new steps in scientific understanding of spray combustion at conditions specific to engines. The ECN community defines different target conditions, experimental diagnostics and post processing methods to facilitate the comparison of experimental and simulations studies performed in different facilities or models. In this context two French laboratories propose two new facilities, based on Rapid Compression Machines to reach the ECN spray A conditions. In this paper, the results of liquid and vapour spray penetration as well as Ignition Delay (ID) and Lift-Off Length (LOL) obtained with these Rapid Compression Machines are compared to the results obtained in the Constant Volume Preburn (CVP) vessel of IFPEN. The specificities of each experimental apparatus allow to bring complementary elements of understanding like confinement effects. In non-reactive condition, the liquid and vapour sprays were characterized by Diffused-Back Illumination and Schlieren technique, and in reactive conditions, the LOL and the ID by OH* chemiluminescence. The analysis of the results with regard to the boundary conditions (temperature, velocity, confinement) make it possible to validate these two new facilities and contribute to enhance the database of ECN, highlighting the confinement effect typical of piston engine operation.

Author(s):  
F. Docchio ◽  
G. Sansoni ◽  
D. Marioli ◽  
A. Taroni ◽  
M. Perini ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Khanh Duc Cung ◽  
Ahmed Abdul Moiz ◽  
Xiucheng Zhu ◽  
Seong-Young Lee

Advanced combustion systems that utilize different combustion modes and alternative fuels have significantly improved combustion performance and emissions compared to conventional diesel or spark-ignited combustions. As an alternative fuel, dimethyl ether (DME) has been receiving much attention as it runs effectively under low-temperature combustion (LTC) modes such as homogeneous charge compression ignition (HCCI) and reactivity control combustion ignition (RCCI). Under compression-ignition (CI), DME can be injected as liquid fuel into a hot chamber, resulting in a diesel-like spray/combustion characteristic. With its high fuel reactivity and unique chemical formula, DME ignites easily but produces almost smokeless combustion. In the current study, DME spray combustion under several different conditions of ambient temperature (Tamb = 750–1100 K), ambient density (ρamb = 14.8–30 kg/m3), oxygen concentration (O2 = 15–21%), and injection pressure (Pinj = 75–150 MPa) were studied. The results from both experiments (constant-volume combustion vessel) and numerical simulations were used to develop empirical correlations for ignition and lift-off length. Compared to diesel, the established correlation of DME shows a similar Arrhenius-type expression. Sensitivity studies show that Tamb and Pinj have a stronger effect on DME's ignition and combustion than other parameters. Finally, this study provides a simplified conceptual mechanism of DME reacting spray under high reactivity ambient (high Tamb, high O2) and LTC conditions. Finally, this paper discusses engine operating strategies using a non-conventional fuel such as DME with different reactivity and chemical properties.


Author(s):  
Wenjin Qin ◽  
Dengbiao Lu ◽  
Lihui Xu

Abstract In this research, n-dodecane and JW are selected as single and multi-component surrogate fuel of aviation kerosene to study the Jet-A spray combustion characteristics. The spray combustion phenomena are simulated using large eddy simulation coupled with detailed chemical reaction mechanism. Proper orthogonal decomposition method is applied to analyze the flow field characteristics, and the instantaneous velocity field are decomposed into four parts, namely the mean field, coherent field, transition field and turbulent field, respectively. The four subfields have their own characteristics. In terms of different fuels, JW has a higher intensity of coherent structures and local vortices than n-dodecane, which promotes the fuel-air mixing and improves the combustion characteristics, and the soot formation is significantly reduced. In addition, with the increase of initial temperature, the combustion is more intense, the ignition delay time is advanced, the flame lift-off length is reduced, and soot formation is increased accordingly.


2019 ◽  
Vol 252 ◽  
pp. 05007 ◽  
Author(s):  
Łukasz Grabowski ◽  
Ksenia Siadkowska ◽  
Krzysztof Skiba

This paper reports the results of simulation works of Rotax 912 aircraft piston engine, which is a basic unit in most ultra-light aircrafts. The method for preparing the model aircraft engine operation process was presented. Simulation tests were carried out in the AVL Boost programme. The programme allows a full use of zero-dimensional and one-dimensional modelling. It also allows a comparison of other engine models. The developed model has enabled us to simulate the flow of air through the inlet pipes, carburettors, valves and combustion process. The preparation of the model required us to enter parameters that are not available in the manufacturer's catalogue, therefore, necessary measurements and analysis of the engine parts were carried out on a laboratory bench. The calculations in the AVL Boost programme were carried out in the conditions determined for the selected BMEP values with the objective of characterising the engine performance by determining its power, torque and fuel consumption.


2020 ◽  
pp. 146808742092264
Author(s):  
Boni F Yraguen ◽  
Farzad Poursadegh ◽  
Caroline L Genzale

The engine combustion network recommends two different imaging-based diagnostics for the measurement of diesel spray ignition delay and lift-off length, respectively. To measure ignition delay, high-speed imaging of broadband luminosity, spectrally filtered to limit collected wavelengths below 600 nm, is recommended. This diagnostic is often referred to as broadband natural luminosity. For lift-off length measurements, the engine combustion network recommends imaging of OH* chemiluminescence. This diagnostic requires using an image-intensified camera to detect narrowly filtered light around 310 nm. Alternatively, it has been shown that the lift-off length can be measured using broadband natural luminosity, avoiding the need for an intensifier and ultraviolet-transmitting optics. However, care is needed in the collection and processing of this diagnostic to accurately isolate the chemiluminescence signal. Particularly, standard intensity thresholding techniques are not sufficient for isolating the chemiluminescence signal in broadband natural luminosity images. Thus, an intensity-histogram-based thresholding method is introduced. This article assesses the feasibility and practicality of measuring lift-off length using broadband natural luminosity using a detailed comparison to OH* chemiluminescence measurements. It is shown that lift-off length measurements using broadband natural luminosity are prone to user bias error in the optical setup and data processing, especially under moderate- to high-sooting conditions. We conclude that while OH* imaging provides the most reliable and accurate measurement of lift-off length at a wide range of ambient conditions, an intensity-histogram analysis can help discriminate the high-temperature chemiluminescence signal from others in a broadband natural luminosity image at higher-sooting operating conditions than demonstrated in current literature.


Author(s):  
Gray C. Thomas ◽  
Clayton C. Gimenez ◽  
Erica D. Chin ◽  
Andrew P. Carmedelle ◽  
Aaron M. Hoover

This paper presents the design and experimental characterization of a continuously variable linear force amplifier based on the theory of capstans. In contrast to traditional capstan amplifiers, the design presented here uses an elastic cable, enabling a control actuator to not only continuously clutch output to a rotating drum but also passively declutch by releasing tension. Our experimental results demonstrate successful declutching at all force amplification ratios up to the limit of our experimental apparatus, 21 — significantly higher than previously published values. A system of distributed capstan amplifiers driven by a central torque source with cable engagement switched by lightweight, low torque actuators has potential to reduce the mass of distal actuators and enable more dynamic performance in robotic applications.


2019 ◽  
Vol 21 (1) ◽  
pp. 134-150 ◽  
Author(s):  
Eduardo J Pérez-Sánchez ◽  
Jose M Garcia-Oliver ◽  
Ricardo Novella ◽  
Jose M Pastor

This investigation analyses the structure of spray A from engine combustion network (ECN), which is representative of diesel-like sprays, by means of large eddy simulations and an unsteady flamelet progress variable combustion model. A very good agreement between modelled and experimental measurements is obtained for the inert spray that supports further analysis. A parametric variation in oxygen concentration is carried out in order to describe the structure of the flame and how it is modified when mixture reactivity is changed. The most relevant trends for the flame metrics, ignition delay and lift-off length are well-captured by the simulations corroborating the suitability of the model for this type of configuration. Results show that the morphology of the flame is strongly affected by the boundary conditions in terms of the reactive scalar spatial fields and Z–T maps. The filtered instantaneous fields provided by the simulations allow investigation of the structure of the flame at the lift-off length, whose positioning shows low fluctuations, and how it is affected by turbulence. It is evidenced that small ignition kernels appear upstream and detached from the flame that eventually merge with its base in agreement with experimental observations, leading to state that auto-ignition plays a key role as one of the flame stabilization mechanisms of the flame.


Sign in / Sign up

Export Citation Format

Share Document