Animal Models Systems of Cancer for Preclinical Trials

Author(s):  
Sneha Soni ◽  
Shreetama Bandyopadhayaya ◽  
Chandi C. Mandal
Author(s):  
Valeria Chiono

Since its adhesion to Centro3R, Politecnico di Torino has approached 3R teaching through a new Master course, entitled “New advances in alternative preclinical trials”. This is a multidisciplinary optional course for Master students in Biomedical Engineering, with the contribution of different teachers, who are experts on different aspects of preclinical testing of biomedical devices: European Standards for preclinical experimentation; preclinical animal models; protection of animal welfare in the European legislation; the role of statistics on the application of the 3R principle; preclinical experimental models in vitro; in silico models. This contribution describes the subjects faced by the course and their importance in the context of the 3R Principle.


2018 ◽  
Vol 28 (2) ◽  
pp. 224-228 ◽  
Author(s):  
Shugo Tohyama ◽  
Eiji Kobayashi

Pigs have traditionally been used for preclinical experiments, and body size-matching is important for cell therapy in animal models used for preclinical trials. It has been shown that the efficacy of the transplanted cells is dependent on the response of the host heart and the age of experimental pigs.


2013 ◽  
Vol 221 (1) ◽  
pp. T31-T41 ◽  
Author(s):  
Christian Hölscher

The incretin hormone glucagon-like peptide 1 (GLP-1) has many effects in the body. It is best known for the ‘incretin effect’, facilitating insulin release from the pancreas under hyperglycaemic conditions. Building on this, GLP-1 mimetics have been developed as a treatment for type 2 diabetes. In the course of monitoring of patients, it has become apparent that GLP-1 mimetics have a range of other physiological effects in the body. In preclinical trials, a substantial body of evidence has been built that these mimetics have neuroprotective and anti-inflammatory effects. GLP-1 also has very similar growth-factor-like properties to insulin, which is presumably the underlying basis of the neuroprotective effects. In preclinical studies of Alzheimer's disease (AD), Parkinson's disease (PD), stroke and other neurodegenerative disorders, it has been shown that most GLP-1 mimetics cross the blood–brain barrier and show impressive neuroprotective effects in numerous studies. In animal models of AD, GLP-1 mimetics such as exendin-4, liraglutide and lixisenatide have shown protective effects in the CNS by reducing β-amyloid plaques, preventing loss of synapses and memory impairments, and reducing oxidative stress and the chronic inflammatory response in the brain. In animal models of PD, exendin-4 showed protection of dopaminergic neurons in the substantia nigra and prevention of dopamine loss in the basal ganglia while preserving motor control. These encouraging findings have spawned several clinical trials, some of which have shown encouraging initial results. Therefore, GLP-1 mimetics show great promise as a novel treatment for neurodegenerative conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Sunil Kim ◽  
Su-Jung Shin ◽  
Yunjung Song ◽  
Euiseong Kim

In recent years, many studies have examined the pulp-dentin complex regeneration with DPSCs. While it is important to perform research on cells, scaffolds, and growth factors, it is also critical to develop animal models for preclinical trials. The development of a reproducible animal model of transplantation is essential for obtaining precise and accurate datain vivo.The efficacy of pulp regeneration should be assessed qualitatively and quantitatively using animal models. This review article sought to introducein vivoexperiments that have evaluated the potential of dental pulp stem cells for pulp-dentin complex regeneration. According to a review of various researches about DPSCs, the majority of studies have used subcutaneous mouse and dog teeth for animal models. There is no way to know which animal model will reproduce the clinical environment. If an animal model is developed which is easier to use and is useful in more situations than the currently popular models, it will be a substantial aid to studies examining pulp-dentin complex regeneration.


2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Keon Yong Lee ◽  
Gun Hyuk Jang ◽  
Cho Hyun Byun ◽  
Minhong Jeun ◽  
Peter C. Searson ◽  
...  

Preclinical screening with animal models is an important initial step in clinical translation of new drug delivery systems. However, establishing efficacy, biodistribution, and biotoxicity of complex, multicomponent systems in small animal models can be expensive and time-consuming. Zebrafish models represent an alternative for preclinical studies for nanoscale drug delivery systems. These models allow easy optical imaging, large sample size, and organ-specific studies, and hence an increasing number of preclinical studies are employing zebrafish models. In this review, we introduce various models and discuss recent studies of nanoscale drug delivery systems in zebrafish models. Also in the end, we proposed a guideline for the preclinical trials to accelerate the progress in this field.


2019 ◽  
Vol 42 ◽  
Author(s):  
Nicole M. Baran

AbstractReductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.


Sign in / Sign up

Export Citation Format

Share Document