Effect of Plastic Waste on Strength of Clayey Soil and Clay Mixed with Fly Ash

Author(s):  
Mithun Mandal ◽  
Nagendra Roy ◽  
Ramakrishna Bag
Keyword(s):  
Fly Ash ◽  
Author(s):  
Ahmed Elkhebu ◽  
◽  
Adnan Zainorabidin ◽  
Ismail Hj. Bakar ◽  
Bujang B. K. Huat ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
pp. 83-95
Author(s):  
Qu Jili ◽  
Wang Junfeng ◽  
Batugin Andrian ◽  
Zhu Hao

Abstract Fine aggregates of construction waste and fly ash were selected as additives to modify the characteristics of Shanghai clayey soil as a composite. The laboratory tests on consistency index, maximum dry density, and unconfined compressive strength were carried out mainly for the purpose of comparing the modifying effect on the composite from fine aggregates of construction waste with that from fly ash. It is mainly concluded from test results that the liquid and plastic limit of the composites increase with the content of two additives. But their maximum dry density all decreases with the additive content. However, fine aggregates of construction waste can increase the optimum water content of the composites, while fly ash on the contrary. Finally, although the two additive all can increase the unconfined compressive strength of composites, fly ash has better effect. The current conclusions are also compared with previous studies, which indicates that the current research results are not completely the same as those from other researchers.


2021 ◽  
Author(s):  
Zawar Hussain ◽  
Gao Lizhen ◽  
Wang Haitao ◽  
Tehreem Ayaz ◽  
Amir Zeb Khan

Abstract Coal power plants are the major contributor of electricity but these power plants are also producing waste in the form of coal fly ash (CFA). However, it can cause high risk of environmental pollution and pulmonary diseases in humans. Plastic waste is also a problematic waste for many countries in terms of its reuse and recycling. Therefore, this study aims to reuse the waste product (CFA) of coal power plants in rubber conveyer belt instead of calcium carbonate or talcum powder and in recycling of plastic propylene as bonding filler material instead of barium sulfate to increase the durability of plastic products and reduce cost, CFA waste and plastic waste. For this purpose, CFA was treated by different pulverization techniques for the production of conveyor belt. The study found that the most favorable technique was shear based pulverization technique. Application of CFA with rubber was compared with two different chemicals (calcium carbonate and talcum powder) and found that the elongation at break of conveyor belt was 35% increased and abrasion volume was 64% reduced by using treated CFA. Furthermore, CFA was used in molten mass of plastic instead of barium sulfate and the results showed that the use of CFA has improved the dimensional stability of plastic material reducing the cost per ton by 2410 CNY. The study concluded that the performance was increased by applying CFA with a reduction in price as compared to other chemicals.


Sign in / Sign up

Export Citation Format

Share Document