Alkaline Activation of Clayey Soil Using Potassium Hydroxide & Fly Ash

Author(s):  
Ahmed Elkhebu ◽  
◽  
Adnan Zainorabidin ◽  
Ismail Hj. Bakar ◽  
Bujang B. K. Huat ◽  
...  
2021 ◽  
Vol 28 (1) ◽  
pp. 83-95
Author(s):  
Qu Jili ◽  
Wang Junfeng ◽  
Batugin Andrian ◽  
Zhu Hao

Abstract Fine aggregates of construction waste and fly ash were selected as additives to modify the characteristics of Shanghai clayey soil as a composite. The laboratory tests on consistency index, maximum dry density, and unconfined compressive strength were carried out mainly for the purpose of comparing the modifying effect on the composite from fine aggregates of construction waste with that from fly ash. It is mainly concluded from test results that the liquid and plastic limit of the composites increase with the content of two additives. But their maximum dry density all decreases with the additive content. However, fine aggregates of construction waste can increase the optimum water content of the composites, while fly ash on the contrary. Finally, although the two additive all can increase the unconfined compressive strength of composites, fly ash has better effect. The current conclusions are also compared with previous studies, which indicates that the current research results are not completely the same as those from other researchers.


2012 ◽  
Vol 36 ◽  
pp. 727-735 ◽  
Author(s):  
Nuno Cristelo ◽  
Stephanie Glendinning ◽  
Tiago Miranda ◽  
Daniel Oliveira ◽  
Rui Silva

2019 ◽  
Vol 204 ◽  
pp. 609-620 ◽  
Author(s):  
Nuno Cristelo ◽  
Ana Fernández-Jiménez ◽  
Fernando Castro ◽  
Lisete Fernandes ◽  
Pedro Tavares

2013 ◽  
Vol 52 ◽  
pp. 112-122 ◽  
Author(s):  
I. García-Lodeiro ◽  
A. Fernández-Jiménez ◽  
A. Palomo

2015 ◽  
Vol 86 ◽  
pp. 169-177 ◽  
Author(s):  
Francesco Messina ◽  
Claudio Ferone ◽  
Francesco Colangelo ◽  
Raffaele Cioffi

2019 ◽  
Vol 289 ◽  
pp. 11001 ◽  
Author(s):  
Adrian Lăzărescu ◽  
Călin Mircea ◽  
Henriette Szilagyi ◽  
Cornelia Baeră

As concrete demand is constantly increasing in recent years and also considering that cement production is both a consumer of natural resources and a source of carbon dioxide release into the atmosphere, there have been worldwide investigations into green alternatives for making concrete environmentally friendlier and simultaneously to satisfy the development of infrastructure facilities. The use of fly ash as a component of cementitious binders is not new but when considering the specific case of alkaline activation and fly ash representing the only source for the binder formation, it necessitates a more complete understanding of its specific reactions during the alkaline activation process. Since the fly ash varies dramatically, not only from one source to another, but also from one batch to another even when provided by the same power plant, its chemistry in obtaining alkali-activated materials during the geopolymerisation process and the final mechanical properties are considered crucial for the performance of geopolymer concrete. This paper will provide a review of the experimental results concerning the physical and mechanical evaluation of the alkali-activated fly ash-based geopolymer materials, developed with different types of fly ash, for a better understanding of geopolymer concrete production control.


Sign in / Sign up

Export Citation Format

Share Document