scholarly journals MODIFICATION OF CLAYEY SOIL USING FLY ASH

2013 ◽  
Vol 02 (10) ◽  
pp. 356-361 ◽  
Author(s):  
Ravi Kumar Sharma .
Keyword(s):  
Fly Ash ◽  
Author(s):  
Ahmed Elkhebu ◽  
◽  
Adnan Zainorabidin ◽  
Ismail Hj. Bakar ◽  
Bujang B. K. Huat ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
pp. 83-95
Author(s):  
Qu Jili ◽  
Wang Junfeng ◽  
Batugin Andrian ◽  
Zhu Hao

Abstract Fine aggregates of construction waste and fly ash were selected as additives to modify the characteristics of Shanghai clayey soil as a composite. The laboratory tests on consistency index, maximum dry density, and unconfined compressive strength were carried out mainly for the purpose of comparing the modifying effect on the composite from fine aggregates of construction waste with that from fly ash. It is mainly concluded from test results that the liquid and plastic limit of the composites increase with the content of two additives. But their maximum dry density all decreases with the additive content. However, fine aggregates of construction waste can increase the optimum water content of the composites, while fly ash on the contrary. Finally, although the two additive all can increase the unconfined compressive strength of composites, fly ash has better effect. The current conclusions are also compared with previous studies, which indicates that the current research results are not completely the same as those from other researchers.


2012 ◽  
Vol 30 (5) ◽  
pp. 1197-1205 ◽  
Author(s):  
Neeraj Kumar Sharma ◽  
S. K. Swain ◽  
Umesh C. Sahoo
Keyword(s):  
Fly Ash ◽  

2020 ◽  
Vol 195 ◽  
pp. 06001
Author(s):  
Canan Turan ◽  
Akbar Javadi ◽  
Raffaele Vinai ◽  
Nader Shariatmadari ◽  
Raziyeh Farmani

Fine-grained soils may have undesired characteristics such as high swelling potential and low strength, thus requiring improvements. One of the stabilization methods involves the use of fly ash. Fly ash is a waste material obtained from burning coal in thermal power plants. The use of fly ash is encouraged as an alternative material for soil stabilization, due to its features such as pozzolanic properties and economic availability. This paper describes the results of an experimental study on stabilization of a clayey soil with fly ash. Unconfined compressive strength (UCS), triaxial and consolidation tests were carried out on samples of kaolinite mixed with class C fly ash at different percentages and cured for 1, 7, and 28 days, in order to study the effects of class C fly ash on the mechanical behaviour of the stabilized soil. The results showed that the inclusion of fly ash significantly improves the strength characteristics of the soil. Curing time was also found to have a significant effect on improving the properties of the soil.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012042
Author(s):  
P Sri Ram Karthik ◽  
K Shyam Chamberlain

Abstract The best handicap for a carried-out community of road structures in growing international locations like India is the restricted monetary assets accessible to construct roads the use of traditional methods. By the usage of nearby substances inclusive of neighbourhood grounds for the constructions of the lower layers of the pavements (in precise the subgrade), the development expenses can be extensively reduced. 20% of the land in India is clayey and is expansive in nature. These lands are observed to be steeply-priced to construct and to maintain roads. The use of coir fibre substances in the discipline of civil engineering has led to new methods for stabilisation of soils in particular. A coir fibre (CF) is an herbal cloth that is broadly handy in Coastal India. A certain find out about was carried out in this paper about enhancing the stability, energy and sturdiness of soil clay mixed up with fly ash and coir fibre mat. The sample of the soil used was from the excessive clay region in Andhra Pradesh. The stabilisation was performed with classification C fly ash and grade H2M9 coir mat. The plasticity of clay fly ash mixes is decreased as fly ash content material is increased. Adding fly ash consequently lessens increasing soils and will increase their working-ability via a colloidal response and adjustments in grain size. The supplementation of fly ash led to full-size increase in soil CBR. The consequences exhibit large enhancement in compaction and CBR of composite containing clay, fly ash and coir mat. The CBR value for virgin Andhra Pradesh clayey soil was 6% which improved to 12% for optimal fly ash (15%) –clayey mix. The CBR value was determined through placing coir mat at more than a few depths in ideal fly ash clay mix. The most CBR value acquired was 44% for coir mat positioned at mixture of h/4th and h/2th depth from pinnacle in standard fly ash - clay mix.


Author(s):  
H. S. Dhindsa ◽  
R. D. Sharma ◽  
Rakesh Kumar

The poor infiltration and fine texture of clay soil causes water logging problem and reduces biological activities in soil. In contrast to this, loose particle and higher in filterability in sandy soil results in low water holding capacity and poor nutrient retention. Fly ash, a waste product of thermal power plants, causes environmental pollution and is hazardous to human health. It is produced in plenty; therefore, safe disposal is very difficult. Fly ash may be used as amendment to improve soil properties and plant growth in such soils. The addition of 20% fly ash in clayey soil and up to 30% in sandy soils improved the germination, tillering, plant height, biological and grain yield of wheat. The addition of fly-ash has also shown improvement in the soil properties <italic>viz</italic>. texture, structure and bulk density. Permeability of clay loam soil increased from 0.54cm/hr to 2.14cm/hr by the addition of 50% fly ash whereas it decreased from 23.80 cm/hr to 9.67 cm/hr in sandy soil by 50% fly-ash addition. Water holding capacity of sandy soil also increased from 0.38 cm/cm to 0.53 cm/cm at 50% level.


Sign in / Sign up

Export Citation Format

Share Document