scholarly journals Frontiers of Computer Vision Technologies on Real Estate Property Photographs and Floorplans

Author(s):  
Yoji Kiyota

AbstractThis article describes frontier efforts to apply deep learning technologies, which is the greatest innovation of research on artificial intelligence and computer vision, to image data such as real estate property photographs and floorplans. Specifically, attempts to detect property photographs that violate regulations or were misclassified, or to extract information that can be used as new recommendation features from property photographs, were mentioned. Besides, this article introduces an innovation created by providing data sets for academic communities.

Author(s):  
Mehmet Ali Şimşek ◽  
Zeynep Orman

Nowadays, the main features of Industry 4.0 are interpreted to the ability of machines to communicate with each other and with a system, increasing the production efficiency and development of the decision-making mechanisms of robots. In these cases, new analytical algorithms of Industry 4.0 are needed. By using deep learning technologies, various industrial challenging problems in Industry 4.0 can be solved. Deep learning provides algorithms that can give better results on datasets owing to hidden layers. In this chapter, deep learning methods used in Industry 4.0 are examined and explained. In addition, data sets, metrics, methods, and tools used in the previous studies are explained. This study can lead to artificial intelligence studies with high potential to accelerate the implementation of Industry 4.0. Therefore, the authors believe that it will be very useful for researchers and practitioners who want to do research on this topic.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2611
Author(s):  
Andrew Shepley ◽  
Greg Falzon ◽  
Christopher Lawson ◽  
Paul Meek ◽  
Paul Kwan

Image data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize access to deep learning technologies by providing an easy-to-use software application allowing non-technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists with the ability to train customised models using publicly available images and/or their own images without specific technical expertise. Auto-annotation and annotation editing functionalities minimize the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and object detection, allowing ecologists to access deep learning technologies usually only available to computer scientists, on their own device, customised for their application, without sharing intellectual property or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will improve ecological image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources, particularly for camera trap images. Ease of training and use of transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.


Author(s):  
Daniel Overhoff ◽  
Peter Kohlmann ◽  
Alex Frydrychowicz ◽  
Sergios Gatidis ◽  
Christian Loewe ◽  
...  

Purpose The DRG-ÖRG IRP (Deutsche Röntgengesellschaft-Österreichische Röntgengesellschaft international radiomics platform) represents a web-/cloud-based radiomics platform based on a public-private partnership. It offers the possibility of data sharing, annotation, validation and certification in the field of artificial intelligence, radiomics analysis, and integrated diagnostics. In a first proof-of-concept study, automated myocardial segmentation and automated myocardial late gadolinum enhancement (LGE) detection using radiomic image features will be evaluated for myocarditis data sets. Materials and Methods The DRG-ÖRP IRP can be used to create quality-assured, structured image data in combination with clinical data and subsequent integrated data analysis and is characterized by the following performance criteria: Possibility of using multicentric networked data, automatically calculated quality parameters, processing of annotation tasks, contour recognition using conventional and artificial intelligence methods and the possibility of targeted integration of algorithms. In a first study, a neural network pre-trained using cardiac CINE data sets was evaluated for segmentation of PSIR data sets. In a second step, radiomic features were applied for segmental detection of LGE of the same data sets, which were provided multicenter via the IRP. Results First results show the advantages (data transparency, reliability, broad involvement of all members, continuous evolution as well as validation and certification) of this platform-based approach. In the proof-of-concept study, the neural network demonstrated a Dice coefficient of 0.813 compared to the expert's segmentation of the myocardium. In the segment-based myocardial LGE detection, the AUC was 0.73 and 0.79 after exclusion of segments with uncertain annotation.The evaluation and provision of the data takes place at the IRP, taking into account the FAT (fairness, accountability, transparency) and FAIR (findable, accessible, interoperable, reusable) criteria. Conclusion It could be shown that the DRG-ÖRP IRP can be used as a crystallization point for the generation of further individual and joint projects. The execution of quantitative analyses with artificial intelligence methods is greatly facilitated by the platform approach of the DRG-ÖRP IRP, since pre-trained neural networks can be integrated and scientific groups can be networked.In a first proof-of-concept study on automated segmentation of the myocardium and automated myocardial LGE detection, these advantages were successfully applied.Our study shows that with the DRG-ÖRP IRP, strategic goals can be implemented in an interdisciplinary way, that concrete proof-of-concept examples can be demonstrated, and that a large number of individual and joint projects can be realized in a participatory way involving all groups. Key Points:  Citation Format


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andre Esteva ◽  
Katherine Chou ◽  
Serena Yeung ◽  
Nikhil Naik ◽  
Ali Madani ◽  
...  

AbstractA decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.


2021 ◽  
Vol 12 (4) ◽  
pp. 35-42
Author(s):  
Thomas Alan Woolman ◽  
Philip Lee

There are significant challenges and opportunities facing the economies of the United States in the coming decades of the 21st century that are being driven by elements of technological unemployment. Deep learning systems, an advanced form of machine learning that is often referred to as artificial intelligence, is presently reshaping many aspects of traditional digital communication technology employment, primarily network system administration and network security system design and maintenance. This paper provides an overview of the current state-of-the-art developments associated with deep learning and artificial intelligence and the ongoing revolutions that this technology is having not only on the field of digital communication systems but also related technology fields. This paper will also explore issues and concerns related to past technological unemployment challenges, as well as opportunities that may be present as a result of these ongoing technological upheavals.


2021 ◽  
Author(s):  
Pawel Kozlowski ◽  
Yong Kim ◽  
Brian Haines ◽  
Thomas Day ◽  
Thomas Murphy ◽  
...  

Author(s):  
Xi Li ◽  
Ting Wang ◽  
Shexiong Wang

It draws researchers’ attentions how to make use of the log data effectively without paying much for storing them. In this paper, we propose pattern-based deep learning method to extract the features from log datasets and to facilitate its further use at the reasonable expense of the storage performances. By taking the advantages of the neural network and thoughts to combine statistical features with experts’ knowledge, there are satisfactory results in the experiments on some specified datasets and on the routine systems that our group maintains. Processed on testing data sets, the model is 5%, at least, more likely to outperform its competitors in accuracy perspective. More importantly, its schema unveils a new way to mingle experts’ experiences with statistical log parser.


2019 ◽  
Vol 15 (11) ◽  
pp. 155014771988313 ◽  
Author(s):  
Zishuo Zhou ◽  
Zahid Akhtar ◽  
Ka Lok Man ◽  
Kamran Siddique

To enhance the safety and stability of autonomous vehicles, we present a deep learning platooning-based video information-sharing Internet of Things framework in this study. The proposed Internet of Things framework incorporates concepts and mechanisms from several domains of computer science, such as computer vision, artificial intelligence, sensor technology, and communication technology. The information captured by camera, such as road edges, traffic lights, and zebra lines, is highlighted using computer vision. The semantics of highlighted information is recognized by artificial intelligence. Sensors provide information on the direction and distance of obstacles, as well as their speed and moving direction. The communication technology is applied to share the information among the vehicles. Since vehicles have high probability to encounter accidents in congested locations, the proposed system enables vehicles to perform self-positioning with other vehicles in a certain range to reinforce their safety and stability. The empirical evaluation shows the viability and efficacy of the proposed system in such situations. Moreover, the collision time is decreased considerably compared with that when using traditional systems.


Diagnostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 261
Author(s):  
Tae-Young Heo ◽  
Kyoung Min Kim ◽  
Hyun Kyu Min ◽  
Sun Mi Gu ◽  
Jae Hyun Kim ◽  
...  

The use of deep-learning-based artificial intelligence (AI) is emerging in ophthalmology, with AI-mediated differential diagnosis of neovascular age-related macular degeneration (AMD) and dry AMD a promising methodology for precise treatment strategies and prognosis. Here, we developed deep learning algorithms and predicted diseases using 399 images of fundus. Based on feature extraction and classification with fully connected layers, we applied the Visual Geometry Group with 16 layers (VGG16) model of convolutional neural networks to classify new images. Image-data augmentation in our model was performed using Keras ImageDataGenerator, and the leave-one-out procedure was used for model cross-validation. The prediction and validation results obtained using the AI AMD diagnosis model showed relevant performance and suitability as well as better diagnostic accuracy than manual review by first-year residents. These results suggest the efficacy of this tool for early differential diagnosis of AMD in situations involving shortages of ophthalmology specialists and other medical devices.


2020 ◽  
Vol 10 (20) ◽  
pp. 7347
Author(s):  
Jihyo Seo ◽  
Hyejin Park ◽  
Seungyeon Choo

Artificial intelligence presents an optimized alternative by performing problem-solving knowledge and problem-solving processes under specific conditions. This makes it possible to creatively examine various design alternatives under conditions that satisfy the functional requirements of the building. In this study, in order to develop architectural design automation technology using artificial intelligence, the characteristics of an architectural drawings, that is, the architectural elements and the composition of spaces expressed in the drawings, were learned, recognized, and inferred through deep learning. The biggest problem in applying deep learning in the field of architectural design is that the amount of publicly disclosed data is absolutely insufficient and that the publicly disclosed data also haves a wide variety of forms. Using the technology proposed in this study, it is possible to quickly and easily create labeling images of drawings, so it is expected that a large amount of data sets that can be used for deep learning for the automatic recommendation of architectural design or automatic 3D modeling can be obtained. This will be the basis for architectural design technology using artificial intelligence in the future, as it can propose an architectural plan that meets specific circumstances or requirements.


Sign in / Sign up

Export Citation Format

Share Document