Investigation of Flow Forming Process and Heat Treatment Effects on 2024 Aluminium Tubes

Author(s):  
Acar Can Kocabıçak ◽  
Aptullah Karakaş ◽  
Güneş Aydın ◽  
Senai Yalçınkaya
2014 ◽  
Vol 59 (2) ◽  
pp. 537-543
Author(s):  
M. Pawlicki ◽  
W. Bochniak

Abstract This work paper presents the results of HV 0.5 microhardness measurements and structural documentation of copper before and after the concurrent elongating flow forming process. No strain work hardening of products was noted. The cause of this behavior was recognized to be the location of strain strain localization in shear bands compounded by a change of the strain path imposed by the flow forming process. The dominance of this plastic flow mechanism makes it possible to conduct a technological process encompassing thinning of product walls with omission of expensive inter-operational softening heat treatment.


2019 ◽  
Vol 14 ◽  
pp. 155892501989525
Author(s):  
Yu Yang ◽  
Yanyan Jia

Ultrafine crystallization of industrial pure titanium allowed for higher tensile strength, corrosion resistance, and thermal stability and is therefore widely used in medical instrumentation, aerospace, and passenger vehicle manufacturing. However, the ultrafine crystallizing batch preparation of tubular industrial pure titanium is limited by the development of the spinning process and has remained at the theoretical research stage. In this article, the tubular TA2 industrial pure titanium was taken as the research object, and the ultrafine crystal forming process based on “5-pass strong spin-heat treatment-3 pass-spreading-heat treatment” was proposed. Based on the spinning process test, the ultimate thinning rate of the method is explored and the evolution of the surface microstructure was analyzed by metallographic microscope. The research suggests that the multi-pass, medium–small, and thinning amount of spinning causes the grain structure to be elongated in the axial and tangential directions, and then refined, and the axial fiber uniformity is improved. The research results have certain scientific significance for reducing the consumption of high-performance metals improving material utilization and performance, which also promote the development of ultrafine-grain metals’ preparation technology.


Author(s):  
Aaditya Srivastava ◽  
Ansh Jain ◽  
Shubham Rajput ◽  
Hari Om Singh ◽  
Bhaskar Chandra Kandpal ◽  
...  

2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


2003 ◽  
Vol 392-396 ◽  
pp. 175-180
Author(s):  
N. Watanabe ◽  
R. Hareyama ◽  
T. Machi ◽  
S. Arai ◽  
N. Koshizuka ◽  
...  

2011 ◽  
Vol 264-265 ◽  
pp. 24-29 ◽  
Author(s):  
Seyed Mohammad Ebrahimi ◽  
Seyed Ali Asghar Akbari Mousavi ◽  
Mostafa Soltan Bayazidi ◽  
Mohammad Mastoori

Flow forming is one of the cold forming process which is used for hollow symmetrical shapes. In this paper, the forward flow forming process is simulated using the finite element method and its results are compared with the experimental process. The variation of thickness of the sample is examined by the ultrasonic tests for the five locations of the tubes. To simulate the process, the ABAQUS explicit is used. The effects of flow forming variables such as the angle of rollers and rate of feeding of rollers, on the external variables such as internal diameter, thickness of tube and roller forces are considered. The study showed that the roller force and surface defects were reduced with low feeding rate and low rollers attack angles. Moreover, the sample internal diameter increased at low feeding rate and low rollers attack angles. The optimum variables for flow forming process were also obtained.


2011 ◽  
Vol 465 ◽  
pp. 459-462 ◽  
Author(s):  
Lin Wang ◽  
Luen Chow Chan ◽  
Ting Fai Kong

The microstrctural evolution pre and post heat treatment is critical to achieve a successful product for metal forming process. This paper aims to investigate the microstructual effect of the magnesium alloy tubes undergone various heat treatment conditions to achieve material homogenization. The heat treatment conditions under various periods of time (1, 2, 6, 12 and 30 hours) at 400 °C were employed to investigate the microstructural effect on hydroforming magnesium tubes. The greatly reduced impurity embedded in grain boundaries and more uniform grain sizes do indicate the improvement of material strength and ductility. To validate the conclusion, corresponding tensile tests at the different temperatures (20 °C and 200 °C) were carried out. The increased engineering strain in two directions (hoop and longitudinal) implies that the microstructural evolution is unquestionably useful to enhance the ductility of the magnesium tubes. Subsequently, the tubes after optimal heat treatment condition at 400 °C for 6 hours were used to further carry out the thermal hydroforming process for validation. The defect-free hydroformed tubes were produced under the same working condition, which is unable to be achieved for tubes without the heat-treatment process.


2015 ◽  
Vol 162 (6) ◽  
pp. H301-H307 ◽  
Author(s):  
Tingting Yu ◽  
Baozhan Zheng ◽  
Lei Zhang ◽  
Zhen Wang ◽  
Dan Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document