Efficiency of Carica papaya Stem Activated with Phosphoric Acid and Sodium Hydroxide in Mining Wastewater Treatment

2021 ◽  
pp. 85-114
Author(s):  
Ezekiel A. Adetoro ◽  
Samson O. Ojoawo
2013 ◽  
Vol 295-298 ◽  
pp. 1372-1375 ◽  
Author(s):  
Guang Wei Liu ◽  
Run Cai Bai

The main formation condition and harmfulness of the acidic mining waste water's were analyzed in this paper. The treatment technology of the acid mine drainage's was briefly introduced. The research development of acid mine drainage was summarized in recent years. It was the fact that developing the efficient, cheap, safe and easy treatment technology of acid mine should be necessary and inevitably and some success management experiences of acidic waste water were applied in acidic mining wastewater.


2021 ◽  
Vol 13 (1) ◽  
pp. 407
Author(s):  
Svetlana B. Zueva ◽  
Francesco Ferella ◽  
Valentina Innocenzi ◽  
Ida De Michelis ◽  
Valentina Corradini ◽  
...  

Typical methods for the treatment of waste pickling solutions include precipitation by alkaline reagents, most commonly calcium hydroxide. As a result, large volumes of galvanic sludge form, containing iron, calcium, sulphates, and a relatively small quantity of zinc (<20%), making Zn recovery not profitable. In summary, state-of-the-art Zn galvanization processes entail the loss of valuable metals and the irrational and expensive handling of spent pickling solutions (SPSs). The resulting conclusion is that there is room for a significant improvement in the way SPSs are treated, with the double goal of enhancing Zn galvanization methods’ economic viability and achieving a lesser impact on the environment’s processes. The experimental results show that it is possible to use SPS as a coagulant to treat the process wastewaters, kept separated, and added with sodium hydroxide. The results in obtaining precipitates with Zn contents higher than 40%, increasing the added advantage of making Zn recovery profitable. The results show the possibility of using SPS as a coagulant in the process of physical-chemical wastewater treatment and sodium hydroxide to obtain a precipitate with a zinc content of more than 40%.


Author(s):  
CLAUDIO LIMA AGUIAR ◽  
TOBIAS J. B. MENEZES

Avaliou-se a produção de celulases e xilanase de Aspergillus niger IZ9, crescido sobre bagaço de cana, quimicamente tratado, como substrato. Os tratamentos foram: solução de hidróxido de sódio a 4%, e solução de hidróxido de sódio a 4%, ácido fosfórico p.a. e vapor. A produção das enzimas celulolíticas (celulase total, endoglicanase e ­glicosidase) e xilanase foi observada nos bagaços tratados e nãotratado. O tratamento com solução de hidróxido de sódio a 4% promoveu maior indução de síntese da maioria das enzimas, com exceção de ­glicosidase, a qual apresentou produção semelhante para os bagaços tratados quimicamente. Abstract It was evaluated the production of cellulases and xylanase by Aspergillus niger IZ09 grown in a substrate consisted of chemically treated sugarcane bagasse. The treatments were: 4% sodium hydroxide solution and 4% sodium hydroxide solution, phosphoric acid and steam. The production of the cellulolytic enzymes (total cellulase, endoglycanase and B.CEPPA, Curitiba, v. 18, n. 1, jan./jun.2000 67 ­glucosidase) and xylanase was observed in the treated and nontreated bagasses. The treatment with 4% sodium hydroxide solution promoted a greater induction of the synthesis of the majority of the enzymes, with exception of ­glucosidase, which showed similar production for both chemically treated bagasses.


2021 ◽  
Vol 317 ◽  
pp. 276-282
Author(s):  
Deong Jing Lie ◽  
Mazatusziha Ahmad ◽  
Nur Sabrina Azhar

Plant-based coagulants have been used as an alternative material to replace chemical coagulant in wastewater treatment. So far, limited information was found on the incorporation of plant-based biocoagulant to natural polymers and the effect of particle size upon wastewater treatment application. Thus, this study was conducted to explore the effectiveness of micronsized and nanosized Carica Papaya (CP) seed modified pullulan as biocoagulant. Biocoagulant were prepared at different composition of CP to pullulan, with the CP content range from 1% to 9%. The biocoagulant were characterized via Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and morphological analysis via Field Emission Scanning Electron Microscopy (FESEM). It was used to treat municipal wastewater. The treated wastewater quality was analyzed by jar test method with dosage of biocoagulant used was 0.6g/L. Result showed that the 10% (D10), 50% (D50) and 90% (D90) distribution of micronsized CP had particle size of 0.3675 µm, 0.8433 µm and 1.9537 µm respectively. The nanosized CP was 0.4473nm (D10), 2.3758nm (D50) and 2.9938nm (D90). Characterization of biocoagulant via FTIR revealed the appearance of O-H, C=O, C-H and C-O-C bond which contribute to particle interaction for turbidity reduction of wastewater. Jar test analysis found that at 3% micronsized CP and 7% nanosized CP were able to reduce turbidity up to 59.65% and 65.27% respectively. Both size of biocoagulant slightly changed the pH of treated wastewater to neutral, increased in dissolved oxygen (DO) and reduced in total suspended solid (TSS). Overall, nanosized CP was found more effective as compared to micronsized CP.


2009 ◽  
Vol 43 (12) ◽  
pp. 4589-4594 ◽  
Author(s):  
Jessica C. D’eon ◽  
Patrick W. Crozier ◽  
Vasile I. Furdui ◽  
Eric J. Reiner ◽  
E. Laurence Libelo ◽  
...  

1924 ◽  
Vol 6 (3) ◽  
pp. 259-271 ◽  
Author(s):  
William J. Robbins

1. Mycelium of Rhizopus nigricans when stained with certain acid and basic dyes and washed with buffer mixtures of 0.1 M phosphoric acid and sodium hydroxide responded much like an amphoteric colloid with an isoelectric point near pH 5.0. 2. When grown on potato dextrose agar the reaction of which was varied with phosphoric acid the extent of colony growth of Rhizopus nigricans plotted against the initial Sörensen value of the agar produced a double maximum curve with the minimum between the two maxima at initial pH 5.2. 3. When grown in potato dextrose broth the reaction of which was varied with phosphoric acid the dry matter produced by Rhizopus nigricans plotted against the Sörensen value of the broth produced a double maximum curve with the minimum between the two maxima at initial pH 5.2 or average pH 4.9. 4. Mycelium of Rhizopus nigricans placed in buffer mixtures of 0.01 M phosphoric acid and sodium hydroxide of pH 4.1 to 6.3, changed the reaction in most cases toward greater alkalinity. 5. Mycelium of Fusarium lycopersici stained with certain acid and basic dyes and washed with buffer mixtures of 0.1 M phosphoric acid and sodium hydroxide responded much like an amphoteric colloid with an isoelectric point near pH 5.5.


Sign in / Sign up

Export Citation Format

Share Document