Antimicrobial Peptides as Effective Agents Against Drug-Resistant Pathogens

2022 ◽  
pp. 289-322
Author(s):  
Pragya Tiwari ◽  
Yashdeep Srivastava ◽  
Vinay Kumar
2021 ◽  
Author(s):  
Yingxue Deng ◽  
Rui Huang ◽  
Songyin Huang ◽  
Menghua Xiong

Antimicrobial peptides (AMPs) have emerged as promising alternatives of traditional antibiotics against drug-resistant bacteria owing to their broad-spectrum antimicrobial properties and low tendency to drugresistance. However, their therapeutic efficacy in vivo, especially for infections in deep organs, is limited owing to their systemic toxicity and low bioavailability. Nanoparticles-based delivery systems offer a strategy to increase the therapeutic index of AMPs by preventing proteolysis, increasing the accumulation at infection sites, and reducing toxicity. Herein, we will discuss the current progress of using nanoparticles as delivery vehicles for AMPs for the treatment of deep infections.


2020 ◽  
Vol 21 (16) ◽  
pp. 5773 ◽  
Author(s):  
Surajit Bhattacharjya ◽  
Suzana K. Straus

In an era where the pipeline of new antibiotic development is drying up, the continuous rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) bacteria are genuine threats to human health. Although antimicrobial peptides (AMPs) may serve as promising leads against drug resistant bacteria, only a few AMPs are in advanced clinical trials. The limitations of AMPs, namely their low in vivo activity, toxicity, and poor bioavailability, need to be addressed. Here, we review engineering of frog derived short α-helical AMPs (aurein, temporins) and lipopolysaccharide (LPS) binding designed β-boomerang AMPs for further development. The discovery of novel cell selective AMPs from the human proprotein convertase furin is also discussed.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Guizi Ye ◽  
Hongyu Wu ◽  
Jinjiang Huang ◽  
Wei Wang ◽  
Kuikui Ge ◽  
...  

Abstract Antimicrobial peptides (AMPs) have been regarded as a potential weapon to fight against drug-resistant bacteria, which is threating the globe. Thus, more and more AMPs had been designed or identified. There is a need to integrate them into a platform for researchers to facilitate investigation and analyze existing AMPs. The AMP database has become an important tool for the discovery and transformation of AMPs as agents. A database linking antimicrobial peptides (LAMPs), launched in 2013, serves as a comprehensive tool to supply exhaustive information of AMP on a single platform. LAMP2, an updated version of LAMP, holds 23 253 unique AMP sequences and expands to link 16 public AMP databases. In the current version, there are more than 50% (12 236) sequences only linking a single database and more than 45% of AMPs linking two or more database links. Additionally, updated categories based on primary structure, collection, composition, source and function have been integrated into LAMP2. Peptides in LAMP2 have been integrated in 8 major functional classes and 38 functional activities. More than 89% (20 909) of the peptides are experimentally validated peptides. A total of 1924 references were extracted and regarded as the evidence for supporting AMP activity and cytotoxicity. The updated version will be helpful to the scientific community.


Author(s):  
Alka Rani ◽  
Khem Chand Saini ◽  
Felix Bast ◽  
Sunita Varjani ◽  
Sanjeet Mehariya ◽  
...  

Microorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and micro algae are the auspicious source of vital bioactive compounds. In this review, the existing state of the art re-garding antimicrobial molecules from microorganisms has been summarized. The potential an-timicrobial compounds from actinomycetes, particularly Streptomyces sp.; archaea; fungi including endophytic and marine-derived fungi, mushroom; yeast, and microalgae were briefly described. Furthermore, this review briefly summarized the activity and mode of action of bacteriocins, a ribosomally synthesized antimicrobial peptides product of Eurotium sp., Streptomyces parvulus, S. thermophiles, Lactococcus lactis, etc. Bacteriocins have inherent properties such as targeting multi-ple-drug resistant pathogens, which allows them to be considered next-generation antibiotics. Similarly, Glarea lozoyensis derived antifungal lipohexpeptides i.e., pneumocandins, inhibits 1,3-β-glucan synthase of the fungal cell wall and acts as a precursor for the synthesis of caspo-fungin, is also elaborated. In conclusion, this review highlights the possibility of using microor-ganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical ap-plications. However, more investigations are still required to separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics.


Sign in / Sign up

Export Citation Format

Share Document