scholarly journals Nanoparticles Enable Efficient Delivery of Antimicrobial Peptides for the Treatment of Deep Infections

2021 ◽  
Author(s):  
Yingxue Deng ◽  
Rui Huang ◽  
Songyin Huang ◽  
Menghua Xiong

Antimicrobial peptides (AMPs) have emerged as promising alternatives of traditional antibiotics against drug-resistant bacteria owing to their broad-spectrum antimicrobial properties and low tendency to drugresistance. However, their therapeutic efficacy in vivo, especially for infections in deep organs, is limited owing to their systemic toxicity and low bioavailability. Nanoparticles-based delivery systems offer a strategy to increase the therapeutic index of AMPs by preventing proteolysis, increasing the accumulation at infection sites, and reducing toxicity. Herein, we will discuss the current progress of using nanoparticles as delivery vehicles for AMPs for the treatment of deep infections.

2020 ◽  
Vol 21 (16) ◽  
pp. 5773 ◽  
Author(s):  
Surajit Bhattacharjya ◽  
Suzana K. Straus

In an era where the pipeline of new antibiotic development is drying up, the continuous rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) bacteria are genuine threats to human health. Although antimicrobial peptides (AMPs) may serve as promising leads against drug resistant bacteria, only a few AMPs are in advanced clinical trials. The limitations of AMPs, namely their low in vivo activity, toxicity, and poor bioavailability, need to be addressed. Here, we review engineering of frog derived short α-helical AMPs (aurein, temporins) and lipopolysaccharide (LPS) binding designed β-boomerang AMPs for further development. The discovery of novel cell selective AMPs from the human proprotein convertase furin is also discussed.


2020 ◽  
Vol 9 (4) ◽  
pp. 1569-1577

The quorum sensing (QS) mechanism has become a viable research strategy for the discovery of plant-derived anti-virulent agents to control drug-resistant bacteria. The increasing incidences of drug-resistant bacteria and the effort to curb it necessitate this study. We investigated the QS inhibitory potential of Centaurea praecox extracts on Chromobacterium violaceum (CV), antibacterial activity, and determination of chemical composition using GC-MS. C. praecox was subjected to sequential extraction using hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), ethanol (ET), and aqueous (AQ) solvents. The extracts were subsequently evaluated for antibacterial activity using disc diffusion and QS violacein inhibition using spectrophotometry. The antibacterial effects of the extracts were moderate on gram-positive bacteria at 4 mg/mL in the order: HEX >EA >DCM >ET =AQ. However, the DCM extract demonstrated the most effective violacein inhibition of ≥80% at 0.3 mg/mL. QS violacein inhibitions were generally found to be concentration-dependent in the order: DCM >EA >HEX >ET =AQ with efficacies of ≥ 90% inhibition at ≥ 0.6 mg/mL. GC-MS analysis on the most potent DCM extract revealed N-vinylmethanimine, N-ethyl formamide, and propanamide among components identified. We concluded that C. praecox DCM extract contains bioactive chemicals as QS inhibitors and potential anti-virulent agents capable of combating the pathogenicity of drug-resistant bacteria in vivo.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Guizi Ye ◽  
Hongyu Wu ◽  
Jinjiang Huang ◽  
Wei Wang ◽  
Kuikui Ge ◽  
...  

Abstract Antimicrobial peptides (AMPs) have been regarded as a potential weapon to fight against drug-resistant bacteria, which is threating the globe. Thus, more and more AMPs had been designed or identified. There is a need to integrate them into a platform for researchers to facilitate investigation and analyze existing AMPs. The AMP database has become an important tool for the discovery and transformation of AMPs as agents. A database linking antimicrobial peptides (LAMPs), launched in 2013, serves as a comprehensive tool to supply exhaustive information of AMP on a single platform. LAMP2, an updated version of LAMP, holds 23 253 unique AMP sequences and expands to link 16 public AMP databases. In the current version, there are more than 50% (12 236) sequences only linking a single database and more than 45% of AMPs linking two or more database links. Additionally, updated categories based on primary structure, collection, composition, source and function have been integrated into LAMP2. Peptides in LAMP2 have been integrated in 8 major functional classes and 38 functional activities. More than 89% (20 909) of the peptides are experimentally validated peptides. A total of 1924 references were extracted and regarded as the evidence for supporting AMP activity and cytotoxicity. The updated version will be helpful to the scientific community.


2011 ◽  
Vol 47 (5) ◽  
pp. 1601-1603 ◽  
Author(s):  
Bengang Xing ◽  
Tingting Jiang ◽  
Wuguo Bi ◽  
Yanmei Yang ◽  
Lihua Li ◽  
...  

2009 ◽  
Vol 1 ◽  
pp. CMT.S2062
Author(s):  
Anthony M. Nicasio ◽  
Joseph L. Kuti ◽  
David P. Nicolau

Due to the growing rate of multi-drug resistant bacteria in complicated infections, the need for new broad-spectrum antimicrobials is paramount. Doripenem, a new addition to the intravenous carbapenem class, has recently been approved for the treatment of complicated lower urinary tract infections and/or pyelonephritis (cUTI) and complicated intra-abdominal infections (cIAI) in adult patients. Doripenem exhibits potent in vitro and in vivo bactericidal activity against an assortment of Gram-positive and Gram-negative aerobic and anaerobic organisms, including Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae that produce extended spectrum beta-lactamases (ESBL). Relative to other available carbapenems, doripenem typically displays MICs that are 1-2 dilutions lower than meropenem and 2-4 dilutions lower than imipenem against P. aeruginosa. Since the kidneys primarily excrete doripenem as whole drug, dose adjustments are needed in patients with renal impairment. Doripenem 500 mg q8 h demonstrated non-inferiority to levofloxacin 250 mg q24 h in clinical trials of patients with cUTI; it was non-inferior to meropenem 1000 mg q8 h in patients with cIAI. Doripenem's broad spectrum of activity, in vitro potency against particularly difficult to treat organisms, and desirable safety profile make it an attractive option in the treatment of cUTI and cIAI.


2014 ◽  
Vol 70 (a1) ◽  
pp. C714-C714
Author(s):  
Calvin Steussy ◽  
Cynthia Stauffacher ◽  
Mark Lipton ◽  
Mohamed Seleem

The emergence of multi-drug resistant pathogenic bacteria is one of the great challenges to modern medicine. The gram positive cocci Methicillin Resistant Staphylococcus aureus (MRSA) and Vancomycin Resistant Enterococcus faecalis (VRE) are two particularly virulent examples. In vivo studies have shown that the eukaryotic like 'mevalonate' isoprenoid pathway used by these pathogenic cocci is essential to their growth and virulence [1]. Our structures of HMG-CoA reductase (HMGR) from P. mevalonii demonstrated that the bacterial enzymes are structurally distinct from the human enzymes allowing for specific antibacterial activity [2]. High throughput in vitro screening against bacterial HMGR at the Southern Research Center, Birmingham, AL uncovered a lead compound with an IC50 of 80 µM with a competitive mode of action. Our x-ray crystal structures of HMGR from E. faecalis complexed with the lead compound and its variations have informed the synthesis of new inhibitors that have improved the IC50 to 5 µM [3]. Studies of this compound show it to be active against both MRSA and VRE in culture, effective against these bacteria in biofilms, and efficacious in a model system of eukaryotic infection. Structures and kinetics of these compounds will be presented and future directions discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Huang Jin-Jiang ◽  
Lu Jin-Chun ◽  
Lu Min ◽  
Huang Qing-Shan ◽  
Li Guo-Dong

Amphipathicα-helical antimicrobial peptides comprise a class of broad-spectrum agents that are used against pathogens. We designed a series of antimicrobial peptides, CP-P (KWKSFIKKLTSKFLHLAKKF) and its derivatives, and determined their minimum inhibitory concentrations (MICs) againstPseudomonas aeruginosa, their minimum hemolytic concentrations (MHCs) for human erythrocytes, and the Therapeutic Index (MHC/MIC ratio). We selected the derivative peptide K11, which had the highest therapeutic index (320) among the tested peptides, to determine the MICs against Gram-positive and Gram-negative bacteria and 22 clinical isolates includingAcinetobacter baumannii, methicillin-resistantStaphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis,andKlebsiella pneumonia. K11 exhibited low MICs (less than 10 μg/mL) and broad-spectrum antimicrobial activity, especially against clinically isolated drug-resistant pathogens. Therefore, these results indicate that K11 is a promising candidate antimicrobial peptide for further studies.


Sign in / Sign up

Export Citation Format

Share Document