On-Site Grey Water Treatment Integrated with Constructed Wetland for Household Appliance

2021 ◽  
pp. 401-422
Author(s):  
Vinayak K. Patki ◽  
P. V. Vijay Babu ◽  
Adinath Palase
2017 ◽  
Vol 3 (5) ◽  
pp. 52
Author(s):  
Rengaraj Chithra Devi ◽  
Nirmaladevi D. Shrinithivihahshini ◽  
Rajendran Viji

Water is inevitable for our life. Due to the population growth, there is a tremendous pressure on the existing fresh water resources such as surface water and ground water. Increasing water demand and improper usage of potable water lead to scarcity of fresh water resources. Globally, treating grey water is a real constraint to minimize the problem of water scarcity. The continuous flow-based constructed wetland system for grey water treatment is a technique for reusing the domestic grey water and it is a low-cost method. The current study was aimed to evolve a suitable user-friendly treatment system for handling the household grey water. In the present study, grey water has been collected from the Bharathidasan University and it has been treated with biofiltration and rhizhodegradation techniques using continuous flow-based constructed wetland system. The system has been found as more effective for treating the Physico-chemical parameters such as suspended solids, pH, electrical conductivity, TS, TDS, DO, BOD, COD, TOC, CO3, HCO3, SO4, NO3, PO4, Ca, Mg, Na, K, total hardness, calcium hardness, chloride, and total alkalinity. The results reported the reduction in the biological oxygen demand (89%), chemical oxygen demand (81%), DO (95%), carbonate (100%), sodium (65%), and potassium (85%).It also examined the benefits and risks associated with the results in the reuse of domestic grey water for the purpose of vegetable gardening, irrigation, and toilet flushing. Consequently, this biofiltration method is natural, simple, and low cost-effective treatment in a holistic manner.


2021 ◽  
Vol 13 (3) ◽  
pp. 1363
Author(s):  
Jingsi Xiao ◽  
Ulrike Alewell ◽  
Ingo Bruch ◽  
Heidrun Steinmetz

Global trends such as climate change and the scarcity of sustainable raw materials require adaptive, more flexible and resource-saving wastewater infrastructures for rural areas. Since 2018, in the community Reinighof, an isolated site in the countryside of Rhineland Palatinate (Germany), an autarkic, decentralized wastewater treatment and phosphorus recovery concept has been developed, implemented and tested. While feces are composted, an easy-to-operate system for producing struvite as a mineral fertilizer was developed and installed to recover phosphorus from urine. The nitrogen-containing supernatant of this process stage is treated in a special soil filter and afterwards discharged to a constructed wetland for grey water treatment, followed by an evaporation pond. To recover more than 90% of the phosphorus contained in the urine, the influence of the magnesium source, the dosing strategy, the molar ratio of Mg:P and the reaction and sedimentation time were investigated. The results show that, with a long reaction time of 1.5 h and a molar ratio of Mg:P above 1.3, constraints concerning magnesium source can be overcome and a stable process can be achieved even under varying boundary conditions. Within the special soil filter, the high ammonium nitrogen concentrations of over 3000 mg/L in the supernatant of the struvite reactor were considerably reduced. In the effluent of the following constructed wetland for grey water treatment, the ammonium-nitrogen concentrations were below 1 mg/L. This resource efficient decentralized wastewater treatment is self-sufficient, produces valuable fertilizer and does not need a centralized wastewater system as back up. It has high potential to be transferred to other rural communities.


2010 ◽  
Vol 62 (7) ◽  
pp. 1471-1478 ◽  
Author(s):  
W. W. Kadewa ◽  
K. Le Corre ◽  
M. Pidou ◽  
P. J. Jeffrey ◽  
B. Jefferson

A novel unplanted vertical flow subsurface constructed wetland technology comprising three shallow beds (0.6 m length, 0.45 m width and 0.2 m depth) arranged in a cascading series and a standard single-pass Vertical Flow Planted Constructed Wetland (VFPCW, 6 m2 and 0.7 m depth) were tested for grey water treatment. Particular focus was on meeting consent for published wastewater reuse parameters and removal of anionic surfactants. Treatment performance at two hydraulic loading rates (HLR) of 0.08, and 0.17 m3 m−2 d−1 were compared. Both technologies effectively removed more than 90% turbidity and more than 96% for organics with the prototype meeting the most stringent reuse standard of <2 NTU and <10 mg/L. However, surfactant removal in the VFPCW was higher (76–85%) than in the prototype which only achieved more than 50% removal at higher loading rate. Generally, the prototype performed consistently better than the VFPCW except for surfactant removal. However, at higher loading rates, both systems did not meet the reuse standard of <1 mg L−1 for anionic surfactants. This observation confirms that shallow beds provide a more oxidised environment leading to higher BOD5 and COD removals. Presence of plants in the VFPCW led to higher anionic surfactant removal, through increased microbial and sorption processes.


1991 ◽  
Vol 14 (4) ◽  
pp. 233-242,231
Author(s):  
Takuya OKUBO ◽  
Masaki SAGEHASHI ◽  
Nobuyuki OHTSUKA ◽  
Mitsumasa OKADA ◽  
Akihiko MURAKAMI

2021 ◽  
Vol 20 (2) ◽  
pp. 247-256
Author(s):  
Leonie Asfora Sarubbo ◽  
Alexandre Augusto Paredes Selva Filho ◽  
Lais Alexandre do Nascimento ◽  
Raquel Diniz Rufino ◽  
Juliana Moura de Luna ◽  
...  

2019 ◽  
Vol 249 ◽  
pp. 109379 ◽  
Author(s):  
Tanveer Saeed ◽  
Nehreen Majed ◽  
Tanbir Khan ◽  
Hena Mallika

2007 ◽  
Vol 56 (3) ◽  
pp. 69-74 ◽  
Author(s):  
H. Brix ◽  
T. Koottatep ◽  
C.H. Laugesen

The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.


Sign in / Sign up

Export Citation Format

Share Document